This experience is optimized for Internet Explorer version 9 and above.

Please upgrade your browser

Send the Gift of Lifelong Learning!

Mysteries of Modern Physics: Time

Mysteries of Modern Physics: Time

Professor Sean Carroll Ph.D.
California Institute of Technology

Gifting Information

FAQ
FAQ

To send your gift, please complete the form below. An email will be sent immediately to notify the recipient of your gift and provide them with instructions to redeem it.

  • 500 characters remaining.

Frequently Asked Questions

With an eGift, you can instantly send a Great Course to a friend or loved one via email. It's simple:
1. Find the course you would like to eGift.
2. Under "Choose a Format", click on Video Download or Audio Download.
3. Click 'Send e-Gift'
4. Fill out the details on the next page. You will need to the email address of your friend or family member.
5. Proceed with the checkout process as usual.
Q: Why do I need to specify the email of the recipient?
A: We will send that person an email to notify them of your gift. If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: How will my friend or family member know they have a gift?
A: They will receive an email from The Great Courses notifying them of your eGift. The email will direct them to TheGreatCourses.com. If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: What if my friend or family member does not receive the email?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at (customerservice@thegreatcourses.com) or call 1-800-832-2412 for assistance.
Q: How will I know they have received my eGift?
A: When the recipient clicks on their email and redeems their eGift, you will automatically receive an email notification.
Q: What if I do not receive the notification that the eGift has been redeemed?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at (customerservice@thegreatcourses.com) or call customer service at 1-800-832-2412 for assistance.
Q: I don't want to send downloads. How do I gift DVDs or CDs?
A: eGifting only covers digital products. To purchase a DVD or CD version of a course and mail it to a friend, please call customer service at 1-800-832-2412 for assistance. Physical gifting can still be achieved online – can we describe that here and not point folks to call?
Q: Oops! The recipient already owns the course I gifted. What now?
A: Great minds think alike! We can exchange the eGifted course for another course of equal value. Please call customer service at 1-800-832-2412 for assistance.
Q: Can I update or change my email address?
A: Yes, you can. Go to My Account to change your email address.
Q: Can I select a date in the future to send my eGift?
A: Sorry, this feature is not available yet. We are working on adding it in the future.
Q: What if the email associated with eGift is not for my regular Great Course account?
A: Please please email customer service at (customerservice@thegreatcourses.com) or call our customer service team at 1-800-832-2412 for assistance. They have the ability to update the email address so you can put in your correct account.
Q: When purchasing a gift for someone, why do I have to create an account?
A: This is done for two reasons. One is so you can track the purchase of the order in your ‘order history’ section as well as being able to let our customer service team track your purchase and the person who received it if the need arises.
Q: Can I return or Exchange a gift after I purchase it?
A: Because the gift is sent immediately, it cannot be returned or exchanged by the person giving the gift. The recipient can exchange the gift for another course of equal or lesser value, or pay the difference on a more expensive item
Video title

Priority Code

Cancel
Mysteries of Modern Physics: Time

Mysteries of Modern Physics: Time

Professor Sean Carroll Ph.D.
California Institute of Technology
Course No.  1257
Course No.  1257
Share:
Sale
Video or Audio?
While this set works well in both audio and video format, one or more of the courses in this set feature graphics to enhance your learning experience, including illustrations, images of people and event, and on-screen text.
Which Format Should I Choose? Video Download Audio Download DVD CD
Watch or listen immediately with FREE streaming
Available on most courses
Stream using apps on your iPad, iPhone, Android, or Kindle Fire
Available on most courses
Stream to your internet connected PC or laptop
Available on most courses
Download files for offline viewing or listening
Receive DVDs or CDs for your library
Play as many times as you want
All formats include Free Streaming
All formats include Free Streaming

Course Overview

About This Course

24 lectures  |  31 minutes per lecture

Time rules our lives. From the rising and setting of the sun to the cycles of nature, the thought processes in our brains, and the biorhythms in our day, nothing so pervades our existence and yet is so difficult to explain. Time seems to be woven into the very fabric of the universe. But why?

Consider these contrasting views of time:

  • A movie of a person diving into a pool has an obvious arrow of time. When the movie is played backward, everyone recognizes that it shows an event that would never occur in the real world.
  • But zoom in on any part of this scene at the atomic scale and the movie can be run backward or forward and be indistinguishable. Either way, the particle interactions are consistent with the laws of physics.
View More

Time rules our lives. From the rising and setting of the sun to the cycles of nature, the thought processes in our brains, and the biorhythms in our day, nothing so pervades our existence and yet is so difficult to explain. Time seems to be woven into the very fabric of the universe. But why?

Consider these contrasting views of time:

  • A movie of a person diving into a pool has an obvious arrow of time. When the movie is played backward, everyone recognizes that it shows an event that would never occur in the real world.
  • But zoom in on any part of this scene at the atomic scale and the movie can be run backward or forward and be indistinguishable. Either way, the particle interactions are consistent with the laws of physics.

Why does one movie have an arrow of time moving in only one direction and the other does not? Surprisingly, the search for an answer leads through some of the most pioneering fields of physics, including thermodynamics, relativity, quantum theory, and cosmology.

The key concept is called “entropy,” which is related to the second law of thermodynamics, considered by many scientists to be the most secure law in all of physics. The second law has even been compared to Shakespeare’s plays in its importance to the education of a culturally informed person.

But that’s only the beginning, since the quest for the ultimate theory of time draws on such exciting ideas as black holes, cosmic inflation, and dark energy, before closing in on a momentous question that until recently was considered unanswerable: What happened before the big bang?

In 24 riveting half-hour lectures, Mysteries of Modern Physics: Time takes you on a mind-expanding journey through the past, present, and future, guided by Professor Sean Carroll, noted author and Senior Research Associate in Physics at the California Institute of Technology.

Designed for nonscientists as well as those with a background in physics, Mysteries of Modern Physics: Time shows how a feature of the world that we all experience connects us to the instant of the formation of the universe—and possibly to a multiverse that is unimaginably larger and more varied than the known cosmos.

While focusing on physics, Professor Carroll also examines philosophical views on time, how we perceive and misperceive time, the workings of memory, and serious proposals for time travel, as well as imaginative ways that time has been disrupted in fiction.

Clues to the Origin of Time

Break an egg. Melt an ice cube. Mix coffee and cream. Each starts with an ordered state and ends with one that is much more disorderly. Each is an example of an increase in entropy, which is a measure of the degree of disorder in a closed system. The entropy of the universe was lower in the past; it will be higher in the future. Increasing entropy defines the arrow of time, implying that at the beginning of the universe entropy must have been extraordinarily low. This course seeks to understand why.

Professor Carroll begins like a detective by gathering the facts. What do we know about time, what characterizes it, and how do we measure it? Then he combs the universe for clues, from the contrasting views on time of Isaac Newton and Albert Einstein, to Rudolf Clausius’s invention of the concept of entropy and Ludwig Boltzmann’s brilliant insight about why entropy increases and therefore why time proceeds from past to future.

You explore Boltzmann’s statistical explanation for the nature of time, and you see how, carried to its logical conclusion, it leads to a bizarre scenario called Boltzmann brains. You look at another curious thought experiment, called Maxwell’s demon, which helps explain the presence of order and life in a universe of relentlessly increasing disorder.

In the course of these inquiries, you consider time from many perspectives, including these:

  • A dimension with a difference: Time is the fourth dimension. But unlike the three dimensions that constitute space, time can’t be explored randomly from point to point. You just experience it sequentially second after second. This continuous flow from past to future is the arrow of time.
  • The view from “nowhen”: The present moment seems real in a way that the past and future do not. But to better understand why time and the universe are the way they are, it’s useful to view all moments—past, present, and future—as equally real. This is the view from “nowhen.”
  • Quantum time: Some phenomena at the quantum scale are not reversible with respect to time—unlike all other processes in fundamental physics. Could these events be the origin of the arrow of time? Could they explain why we remember the past but not the future?

You also investigate the past hypothesis, which assumes that atomic theory and fundamental physics cannot account for the difference between the past and the future by themselves. Instead, the arrow of time can only be explained by the initial conditions that gave birth to the universe itself. Which brings you to the big bang, one of the major focuses of this course.

Time to Get This Course

Your time-traveling adventures also include excursions into fiction and film, which Professor Carroll engages with characteristic enthusiasm and wit. While storytellers are seldom concerned with getting the physics right, it’s instructive how they usually get it very wrong:

  • Stopping time: Stories that stop time as the hero moves through a stationary world fail to consider that no one could function in such an environment. Air would be as immovable as a brick wall. Light and sound would stop. No plot would be possible!
  • Time going backward: A character who experiences the arrow of time in reverse faces grave difficulties relating to another character going through time the normal way. They would be like travelers on the highway going in opposite directions.
  • Time travel: Fictional time travelers typically dematerialize and then rematerialize at a different point in time. But real time travel, if it were possible, could not skip over the intervening part of spacetime. Real time travel would be a journey through spacetime.

In the time that has passed since you started reading this, the entropy of the universe has increased. The future of a few moments ago is now the present. You are at a different point in spacetime, even if you haven’t moved from your chair. “What is time?” asked Saint Augustine 1,600 years ago. “If no one asks me, I know. But if I wish to explain it to someone who asks, I know not.” With Mysteries of Modern Physics: Time, you will be much closer to an answer.

View Less
24 Lectures
  • 1
    Why Time Is a Mystery
    Begin your study of the physics of time with these questions: What is a clock? What does it mean to say that “time passes”? What is the “arrow of time”? Then look at the concept of entropy and how it holds the key to the one-way direction of time in our universe. x
  • 2
    What Is Time?
    Approach time from a philosophical perspective. “Presentism” holds that the past and future are not real; only the present moment is real. However, the laws of physics appear to support “eternalism”—the view that all of the moments in the history of the universe are equally real. x
  • 3
    Keeping Time
    How do we measure the passage of time? Discover that practical concerns have driven the search for more and more accurate clocks. In the 18th century, the problem of determining longitude was solved with a timepiece of unprecedented accuracy. Today’s GPS navigation units rely on clocks accurate to a billionth of a second. x
  • 4
    Time’s Arrow
    Embark on the quest that will occupy the rest of the course: Why is there an arrow of time? Explore how memory and aging orient us in time. Then look at irreversible processes, such as an egg breaking or ice melting. These capture the essence of the one-way direction of time. x
  • 5
    The Second Law of Thermodynamics
    Trace the history of the second law of thermodynamics, considered by many physicists to be the one law of physics most likely to survive unaltered for the next thousand years. The second law says that entropy—the degree of disorder in a closed system—only increases or stays the same. x
  • 6
    Reversibility and the Laws of Physics
    Isaac Newton’s laws of physics are fully reversible; particles can move forward or backward in time without any inconsistency. But this is not our experience in the world, where the arrow of time is fundamentally connected to irreversible processes and the increase in entropy. x
  • 7
    Time Reversal in Particle Physics
    Explore advances in physics since Newton’s time that reveal exceptions to the rule that interactions between moving particles are fully reversible. Could irreversible reactions between elementary particles explain the arrow of time? Weigh the evidence for and against this view. x
  • 8
    Time in Quantum Mechanics
    Quantum mechanics is the most precise theory ever invented, yet it leads to startling interpretations of the nature of reality. Probe a quantum state called the collapse of the wave function that may underlie the arrow of time. Are the indications that it shows irreversibility real or only illusory? x
  • 9
    Entropy and Counting
    After establishing in previous lectures that the arrow of time must be due to entropy, begin a deep exploration of this phenomenon. In the 1870s, physicist Ludwig Boltzmann proposed a definition of entropy that explains why it increases toward the future. Analyze this idea in detail. x
  • 10
    Playing with Entropy
    Sharpen your understanding of entropy by examining different macroscopic systems and asking, which has higher entropy and which has lower entropy? Also evaluate James Clerk Maxwell’s famous thought experiment about a demon who seemingly defies the principle that entropy always increases. x
  • 11
    The Past Hypothesis
    Boltzmann explains why entropy will be larger in the future, but he doesn’t show why it was smaller in the past. Learn that physics can’t account for this difference except by assuming that the universe started in a state of very low entropy. This assumption is called the past hypothesis. x
  • 12
    Memory, Causality, and Action
    Can physics shed light on human aspects of the arrow of time such as memory, cause and effect, and free will? Learn that everyday features of experience that you take for granted trace back to the low entropy state of the universe at the big bang, 13.7 billion years ago. x
  • 13
    Boltzmann Brains
    One possible explanation for order in the universe is that it is a random fluctuation from a disordered state. Could the entire universe be one such fluctuation, now in the process of returning to disorder? Investigate a scenario called “Boltzmann brains” that suggests not. x
  • 14
    Complexity and Life
    Discover that Maxwell’s demon from lecture 10 provides the key to understanding how complexity and life can exist in a universe in which entropy is increasing. Consider how life is not only compatible with, but is an outgrowth of, the second law of thermodynamics and the arrow of time. x
  • 15
    The Perception of Time
    Turn to the way humans perceive time, which can vary greatly from clock time. In particular, focus on experiments that shed light on our time sense. For example, tests show that even though we think we perceive the present moment, we actually live 80 milliseconds in the past. x
  • 16
    Memory and Consciousness
    Remembering the past and projecting into the future are crucial for human consciousness, as shown by cases where these faculties are impaired. Investigate what happens in the brain when we remember, exploring different kinds of memory and the phenomena of false memories and false forgetting. x
  • 17
    Time and Relativity
    According to Einstein’s special theory of relativity, there is no such thing as a moment in time spread throughout the universe. Instead, time is one of four dimensions in spacetime. Learn how this “relative” view of time is usefully diagramed with light cones, representing the past and future. x
  • 18
    Curved Spacetime and Black Holes
    By developing a general theory of relativity incorporating gravity, Einstein launched a revolution in our understanding of the universe. Trace how his idea that gravity results from the warping of spacetime led to the discovery of black holes and the big bang. x
  • 19
    Time Travel
    Use a simple analogy to understand how a time machine might work. Unlike movie scenarios featuring dematerializing and rematerializing, a real time machine would be a spaceship that moves through all the intervening points between two locations in spacetime. Also explore paradoxes of time travel. x
  • 20
    Black Hole Entropy
    Stephen Hawking showed that black holes emit radiation and therefore have entropy. Since the entropy in the universe today is overwhelmingly in the form of black holes and there were no black holes in the early universe, entropy must have been much lower in the deep past. x
  • 21
    Evolution of the Universe
    Follow the history of the universe from just after the big bang to the far future, when the universe will consist of virtually empty space at maximum entropy. Learn what is well founded and what is less certain about this picture of a universe winding down. x
  • 22
    The Big Bang
    Explore three different ways of thinking about the big bang—as the actual beginning of the universe; as a “bounce” from a symmetric version of the universe on the other side of the big bang; and as a region that underwent inflationary expansion in a much larger multiverse. x
  • 23
    The Multiverse
    Dig deeper into the possibility that the big bang originated in a multiverse, which provides a plausible explanation for why entropy was low at the big bang, giving rise to the arrow of time. But is this theory and the related idea of an anthropic principle legitimate science or science fiction? x
  • 24
    Approaches to the Arrow of Time
    Use what you have learned in the course to investigate a range of different possibilities that explain the origin of time in the universe. Professor Carroll closes by presenting one of his favorite theories and noting how much remains to be done before conclusively solving the mystery of time. x

Lecture Titles

Clone Content from Your Professor tab

Your professor

Sean Carroll
Ph.D. Sean Carroll
California Institute of Technology

Professor Sean Carroll is a Senior Research Associate in Physics at the California Institute of Technology. He earned his undergraduate degree from Villanova University and his Ph.D. in Astrophysics from Harvard in 1993. Before arriving at Caltech, Professor Carroll taught in the Physics Department and the Enrico Fermi Institute at the University of Chicago, and did postdoctoral research at the Massachusetts Institute of Technology and at the Institute for Theoretical Physics at the University of California, Santa Barbara. Professor Carroll is the author of Spacetime and Geometry: An Introduction to General Relativity, published in 2003. He has taught more than 200 scientific seminars and colloquia and given more than 50 educational and popular talks. In addition, he has written for numerous publications including Nature, New Scientist, The American Scientist, and Physics Today. Professor Carroll has received research grants from NASA, the U.S. Department of Energy, and the National Science Foundation, as well as fellowships from the Sloan and Packard foundations. He has been the Malmstrom Lecturer at Hamline University, the Resnick Lecturer at Rensselaer Polytechnic Institute, and a National Science Foundation Distinguished Lecturer. While at MIT, Carroll won the Graduate Student Council Teaching Award for his course on general relativity. In 2006 he received the Arts and Sciences Alumni Medallion from Villanova University.

View More information About This Professor
Also By This Professor
View All Courses By This Professor

Reviews

Rated 4.1 out of 5 by 50 reviewers.
Rated 5 out of 5 by A transformative course. Although non-mathematical, this course operates at a very high level of abstraction. It is physics and cosmology at the border of philosophy. What I found so impressive is that Dr. Carroll was able to unify a vast body of physics and cosmology through his central theme of the arrow of time. For the first time, I was able to gain an inkling, as a non-scientist, of how the main strands of modern physics (general relativity, quantum theory, thermodynamics) interrelate. Through his fairly brief discussion of brain chemistry and the psychology of perception, Dr. Carroll was able to show the connections between this fundamental physics and our daily lives. Our memories, our thoughts, our perceptions of ourselves depend on the arrow of time. And the arrow of time results from the Second Law of Thermodynamics. The central question Dr. Carroll tries to answer is why time always moves forward when, under the symmetries of the laws of physics, it can equally well run backward. His speculation is that this is the result of an eternal increase in entropy caused by cosmic inflation. He builds his argument painstakingly over the course of the lectures. Only at the close of the last lecture do you fully see where he has been leading. I felt vastly rewarded that I could actually understand a good part of such a complex speculation. I have two criticisms of the course. First, Dr. Carroll speaks too quickly. Maybe this is because he has so many difficult and subtle ideas to present. I found it necessary to listen to many of his more difficult points several times before I could even begin to grasp them. Second, I disagree with his concept of what consciousness is. He says that consciousness depends on self-recognition, awareness of alternative futures, and symbolic thought. This is true of higher human thought, but there is a more basic level of consciousness probably shared by all forms of life and maybe even inanimate particles, which involves only sensation. But these are quibbles. If you are perplexed by the passage of time and your place in the vast and evolving universe, this course is indispensable. December 4, 2014
Rated 5 out of 5 by Must have Outstanding course. You will not be disappointed!! November 1, 2014
Rated 2 out of 5 by Interesting topic but . . . didn't know much more about it than I did before taking the course. I had high expectations upon seeing this course offered but learned less than any other course taken. September 22, 2014
Rated 1 out of 5 by Mysteries of modern physics:Time This course was advertised in Time Magazine On DVD for $69.95. Whats up? July 2, 2014
2 3 next>>

Questions & Answers

Customers Who Bought This Course Also Bought

Some courses include Free digital streaming.

Enjoy instantly on your computer, laptop, tablet or smartphone.