This experience is optimized for Internet Explorer version 9 and above.

Please upgrade your browser

Send the Gift of Lifelong Learning!

Physics and Our Universe: How It All Works

Physics and Our Universe: How It All Works

Gifting Information

FAQ
FAQ

To send your gift, please complete the form below. An email will be sent immediately to notify the recipient of your gift and provide them with instructions to redeem it.

  • 500 characters remaining.

Frequently Asked Questions

With an eGift, you can instantly send a Great Course to a friend or loved one via email. It's simple:
1. Find the course you would like to eGift.
2. Under "Choose a Format", click on Video Download or Audio Download.
3. Click 'Send e-Gift'
4. Fill out the details on the next page. You will need to the email address of your friend or family member.
5. Proceed with the checkout process as usual.
Q: Why do I need to specify the email of the recipient?
A: We will send that person an email to notify them of your gift. If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: How will my friend or family member know they have a gift?
A: They will receive an email from The Great Courses notifying them of your eGift. The email will direct them to TheGreatCourses.com. If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: What if my friend or family member does not receive the email?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at (customerservice@thegreatcourses.com) or call 1-800-832-2412 for assistance.
Q: How will I know they have received my eGift?
A: When the recipient clicks on their email and redeems their eGift, you will automatically receive an email notification.
Q: What if I do not receive the notification that the eGift has been redeemed?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at (customerservice@thegreatcourses.com) or call customer service at 1-800-832-2412 for assistance.
Q: I don't want to send downloads. How do I gift DVDs or CDs?
A: eGifting only covers digital products. To purchase a DVD or CD version of a course and mail it to a friend, please call customer service at 1-800-832-2412 for assistance.
Q: Oops! The recipient already owns the course I gifted. What now?
A: Great minds think alike! We can exchange the eGifted course for another course of equal value. Please call customer service at 1-800-832-2412 for assistance.
Q: Can I update or change my email address?
A: Yes, you can. Go to My Account to change your email address.
Q: Can I select a date in the future to send my eGift?
A: Sorry, this feature is not available yet. We are working on adding it in the future.
Q: What if the email associated with eGift is not for my regular Great Course account?
A: Please please email customer service at (customerservice@thegreatcourses.com) or call our customer service team at 1-800-832-2412 for assistance. They have the ability to update the email address so you can put in your correct account.
Q: When purchasing a gift for someone, why do I have to create an account?
A: This is done for two reasons. One is so you can track the purchase of the order in your ‘order history’ section as well as being able to let our customer service team track your purchase and the person who received it if the need arises.
Q: Can I return or Exchange a gift after I purchase it?
A: Because the gift is sent immediately, it cannot be returned or exchanged by the person giving the gift. The recipient can exchange the gift for another course of equal or lesser value, or pay the difference on a more expensive item
Video title

Priority Code

Cancel
Physics and Our Universe: How It All Works

Physics and Our Universe: How It All Works

Professor Richard Wolfson Ph.D.
Middlebury College
Course No.  1280
Course No.  1280
Share:
Video or Audio?
While this set works well in both audio and video format, one or more of the courses in this set feature graphics to enhance your learning experience, including illustrations, images of people and event, and on-screen text.
Which Format Should I Choose? Video Download Audio Download DVD CD
Watch or listen immediately with FREE streaming
Available on most courses
Stream using apps on your iPad, iPhone, Android, or Kindle Fire
Available on most courses
Stream to your internet connected PC or laptop
Available on most courses
Download files for offline viewing or listening
Receive DVDs or CDs for your library
Play as many times as you want
Video formats include Free Streaming
Video formats include Free Streaming

Course Overview

About This Course

60 lectures  |  30 minutes per lecture

Physics is the fundamental science. It explains how the universe behaves at every scale, from the subatomic to the extragalactic. It describes the most basic objects and forces and how they interact. Its laws tell us how the planets move, where light comes from, what keeps birds aloft, why a magnet attracts and also repels, and when a falling object will hit the ground, and it gives answers to countless other questions about how the world works.

Physics also gives us extraordinary power over the world, paving the way for devices from radios to GPS satellites, from steam engines to nanomaterials. It's no exaggeration to say that every invention ever conceived makes use of the principles of physics. Moreover, physics not only underlies all of the natural sciences and engineering, but also its discoveries touch on the deepest philosophical questions about the nature of reality.

View More

Physics is the fundamental science. It explains how the universe behaves at every scale, from the subatomic to the extragalactic. It describes the most basic objects and forces and how they interact. Its laws tell us how the planets move, where light comes from, what keeps birds aloft, why a magnet attracts and also repels, and when a falling object will hit the ground, and it gives answers to countless other questions about how the world works.

Physics also gives us extraordinary power over the world, paving the way for devices from radios to GPS satellites, from steam engines to nanomaterials. It's no exaggeration to say that every invention ever conceived makes use of the principles of physics. Moreover, physics not only underlies all of the natural sciences and engineering, but also its discoveries touch on the deepest philosophical questions about the nature of reality.

Which makes physics sound like the most complicated subject there is. But it isn't. The beauty of physics is that it is simple, so simple that anyone can learn it. In 60 enthralling half-hour lectures, Physics and Our Universe: How It All Works proves that case, giving you a robust, introductory college-level course in physics. This course doesn't stint on details and always presents its subject in all of its elegance—yet it doesn't rely heavily on equations and mathematics, using nothing more advanced than high school algebra and trigonometry.

Your teacher is Professor Richard Wolfson, a noted physicist and educator at Middlebury College. Professor Wolfson is author or coauthor of a wide range of physics textbooks, including a widely used algebra-based introduction to the subject for college students. He has specially designed Physics and Our Universe to be entirely self-contained, requiring no additional resources. And for those who wish to dig deeper, he includes an extensive list of suggested readings that will enhance your understanding of basic physics.

Explore the Fundamentals of Reality

Intensively illustrated with diagrams, illustrations, animations, graphs, and other visual aids, these lectures introduce you to scores of fundamental ideas such as these:

  • Newton's laws of motion: Simple to state, these three principles demolish our intuitive sense of why things move. Following where they lead gives a unified picture of motion and force that forms the basis of classical physics.
  • Bernoulli effect: In fluids, an increase in speed means a decrease in pressure. This effect has wide application in aerodynamics and hydraulics. It explains why curve balls curve and why plaque in an artery can cause the artery to collapse.
  • Second law of thermodynamics: Echoing the British novelist and physicist C. P. Snow, Professor Wolfson calls this law about the tendency toward disorder "like a work of Shakespeare's" in its importance to an educated person's worldview.
  • Maxwell's equations: Mathematically uniting the theories of electricity and magnetism, these formulas have a startling outcome, predicting the existence of electromagnetic waves that move at the speed of light and include visible light.
  • Interference and diffraction: The wave nature of light looms large when light interacts with objects comparable in size to the light's wavelength. Interference and diffraction are two intriguing phenomena that appear at these scales.
  • Relativity and quantum theory: Introduced in the early 20th century, these revolutionary ideas not only patched cracks in classical mechanics but led to realms of physics never imagined, with limitless new horizons for research.

A Course of Breathtaking Scope

The above ideas illustrate the breathtaking scope of Physics and Our Universe, which is broken into six areas of physics plus an introductory section that take you from Isaac Newton's influential "clockwork universe" in the 17th century to the astonishing ideas of modern physics, which have overturned centuries-old views of space, time, and matter. The seven sections of the course are these:

  • Introduction: Start the course with two lectures on the universality of physics and its special languages.
  • Newtonian Mechanics: Immerse yourself in the core ideas that transformed physics into a science.
  • Oscillations, Waves, Fluids: See how Newtonian mechanics explains systems involving many particles.
  • Thermodynamics: Investigate heat and its connection to the all-important concept of energy.
  • Electricity and Magnetism: Explore electromagnetism, the dominant force on the atomic through human scales.
  • Optics: Proceed from the study of light as simple rays to phenomena involving light's wave properties.
  • Beyond Classical Physics: Review the breakthroughs in physics that began with Max Planck and Albert Einstein.

As vast as this scope is, you will not be overwhelmed, because one set of ideas in physics builds on those that precede it. Professor Wolfson constantly reviews where you've been, tying together different concepts and giving you a profound sense of how one thing leads to another in physics. Since the 17th century, physics has expanded like a densely branching tree, with productive new shoots continually forming, some growing into major limbs, but all tracing back to the sturdy foundation built by Isaac Newton and others—which is why Physics and Our Universe and most other introductory physics courses have a historical focus, charting the fascinating growth of the field.

An interesting example is Newtonian mechanics. Developments in the late 19th century showed that Newton's system breaks down at very high speeds and small scales, which is why relativity and quantum theory replaced classical physics in these realms. But the Newtonian approach is still alive and well for many applications. Newtonian mechanics will get you to the moon in a spacecraft, allow you to build a dam or a skyscraper, explain the behavior of the atmosphere, and much more. On the other hand, for objects traveling close to the speed of light or events happening in the subatomic realm, you learn that relativity and quantum theory are the powerful new tools for describing how the world works.

Seeing Is Believing

Physics would not be physics without experiments, and one of the engaging aspects of this course is the many on-screen demonstrations that Professor Wolfson performs to illustrate physical principles in action. With a showman's gifts, he conducts scores of experiments, including the following:

  • Whirling bucket: Why doesn't water fall out of a bucket when you whirl it in a vertical circle? It is commonly believed that there is a force holding the water up. But this is a relic of pre-Newtonian thinking dating to Aristotle. Learn to analyze what's really going on.
  • Bowling ball pendulum: Would you bet the safety of your skull on the conservation of energy? Watch a volunteer release a pendulum that swings across the room and hurtles back directly at her nose, which escapes harm thanks to the laws of physics.
  • Big chill: What happens when things get really cold? Professor Wolfson pours liquid nitrogen on a blown-up balloon, demonstrating dramatic changes in the volume of air in the balloon. Discover other effects produced by temperature change.
  • Energy and power: How much power is ordered up from the grid whenever you turn on an electric light? Get a visceral sense by watching a volunteer crank a generator to make a light bulb glow. Try a simple exercise to experience the power demand yourself.
  • Total internal reflection: How does a transparent medium such as glass act as an almost perfect mirror without a reflective coating? See a simple demonstration that reveals the principle behind rainbows, binoculars, and optical fibers.
  • Relativity revelation: What gave Einstein the idea for his special theory of relativity? Move a magnet through a coil, then move a coil around a magnet. You get the same effect. But in Einstein's day there were two separate explanations, which made him think ...

Math for Those Who Want to Probe Deeper

Professor Wolfson doesn't just perform memorable experiments. He introduces basic mathematics to analyze situations in detail—for example, by calculating exactly the speed a rollercoaster needs to travel to keep passengers from falling out at the top of a loop-the-loop track, or by showing that the reason high voltage is used for electrical power transmission is revealed in the simple expression that applies Ohm's law, relating current and voltage, to the formula for power.

You also see how amazing insights can be hidden in seemingly trivial mathematical details. Antimatter was first postulated when physicist Paul Dirac was faced with a square root term in an equation, and instead of throwing out one of the answers as would normally have been done, he decided to pursue the implications of two solutions.

Whenever Professor Wolfson introduces an equation, he explains what every term in the equation means and the significance of the equation for physics. You need not go any further than this to follow his presentation, but for those who wish to probe deeper he works out solutions to many problems, showing the extraordinary reach of mathematics in analyzing nature. But he stresses that physics is not about math; it's the ideas of physics that are crucial.

Understand the World in a New Way

Above all, the ideas of physics are simple. As you discover in this course, just a handful of important concepts permeate all of physics. Among them are

  • conservation of energy,
  • conservation of momentum,
  • second law of thermodynamics,
  • conservation of electric charge,
  • principle of relativity, and
  • Heisenberg uncertainty principle.

The key is not just to think in terms of these principles, but also to let go of common misconceptions, such as the idea that force causes motion; in fact, force causes change in motion. As you progress through Physics and Our Universe, you'll inevitably start to see the world differently.

"I love teaching physics and I love to see the understanding light up in people's eyes," says Professor Wolfson. "You'll see common, everyday phenomena with new understanding, like slamming on the brakes of your car and hearing the antilock brake system engage and knowing the physics of why it works; like going out on a very cold day and appreciating why your breath is condensing; like turning on your computer and understanding what's going on in those circuits. You will come to a much greater appreciation of all aspects of the world around you."

View Less
60 Lectures
  • 1
    The Fundamental Science
    Take a quick trip from the subatomic to the galactic realm as an introduction to physics, the science that explains physical reality at all scales. Professor Wolfson shows how physics is the fundamental science that underlies all the natural sciences. He also describes phenomena that are still beyond its explanatory power. x
  • 2
    Languages of Physics
    Understanding physics is as much about language as it is about mathematics. Begin by looking at how ordinary terms, such as theory and uncertainty, have a precise meaning in physics. Learn how fundamental units are defined. Then get a taste of the basic algebra that is used throughout the course. x
  • 3
    Describing Motion
    Motion is everywhere, at all scales. Learn the difference between distance and displacement, and between speed and velocity. Add to these the concept of acceleration, which is the rate of change of velocity, and you are ready to delve deeper into the fundamentals of motion. x
  • 4
    Falling Freely
    Use concepts from the previous lecture to analyze motion when an object is under constant acceleration due to gravity. In principle, the initial conditions in such cases allow the position of the object to be determined for any time in the future, which is the idea behind Isaac Newton's "clockwork universe." x
  • 5
    It's a 3-D World!
    Add the concept of vector to your physics toolbox. Vectors allow you to specify the magnitude and direction of a quantity such as velocity. The vector's direction can be along any axis, allowing analysis of motion in three dimensions. Then use vectors to solve several problems in projectile motion. x
  • 6
    Going in Circles
    Circular motion is accelerated motion, even if the speed is constant, because the direction, and hence the velocity, is changing. Analyze cases of uniform and non-uniform circular motion. Then close with a problem challenging you to pull out of a dive in a jet plane without blacking out or crashing. x
  • 7
    Causes of Motion
    For most people, the hardest part of learning physics is to stop thinking like Aristotle, who believed that force causes motion. It doesn't. Force causes change in motion. Learn how Galileo's realization of this principle, and Newton's later formulation of his three laws of motion, launched classical physics. x
  • 8
    Using Newton's Laws—1-D motion
    Investigate Newton's second law, which relates force, mass, and acceleration. Focus on gravity, which results in a force, called weight, that's proportional to an object's mass. Then take a ride in an elevator to see how your measured weight changes due to acceleration during ascent and descent. x
  • 9
    Action and Reaction
    According to Newton's third law, "for every action there is an equal and opposite reaction." Professor Wolfson has a clearer way of expressing this much-misunderstood phrase. Also, see several demonstrations of action and reaction, and learn about frictional forces through examples such as antilock brakes. x
  • 10
    Newton's Laws in 2 and 3 Dimensions
    Consider Newton's laws in cases of two and three dimensions. For example, how fast does a rollercoaster have to travel at the top of a loop to keep passengers from falling out? Is there a force pushing passengers up as the coaster reaches the top of its arc? The answer may surprise you. x
  • 11
    Work and Energy
    See how the precise definition of work leads to the concept of energy. Then explore how some forces "give back" the work done against them. These conservative forces lead to the concept of stored potential energy, which can be converted to kinetic energy. From here, develop the important idea of conservation of energy. x
  • 12
    Using Energy Conservation
    A dramatic demonstration with a bowling ball pendulum shows how conservation of energy is a principle you can depend on. Next, solve problems in complicated motion using conservation of energy as a shortcut. Close by drawing the distinction between energy and power, which are often confused. x
  • 13
    Gravity
    Newton realized that the same force that makes an apple fall to the ground also keeps the moon in its orbit around Earth. Explore this force, called gravity, by focusing on circular orbits. End by analyzing why an orbiting spacecraft has to decrease its kinetic energy in order to speed up. x
  • 14
    Systems of Particles
    How do you analyze a complex system in motion? One special point in the system, called the center of mass, reduces the problem to its simplest form. Also learn how a system's momentum is unchanged unless external forces act on it. Then apply the conservation of momentum principle to analyze inelastic and elastic collisions. x
  • 15
    Rotational Motion
    Turn your attention to rotational motion. Rotational analogs of acceleration, force, and mass obey a law related to Newton's second law. This leads to the concept of angular momentum and the all-important -conservation of angular momentum, which explains some surprising and seemingly counterintuitive phenomena involving rotating objects. x
  • 16
    Keeping Still
    What's the safest angle to lean a ladder against a wall to keep the ladder from slipping and falling? This is a problem in static equilibrium, which is the state in which no net force or torque (rotational force) is acting. Explore this condition and develop tools for determining whether equilibrium is stable or unstable. x
  • 17
    Back and Forth—Oscillatory Motion
    Start a new section in which you apply Newtonian mechanics to more complex motions. In this lecture, study oscillations, a universal phenomenon in systems displaced from equilibrium. A special case is simple harmonic motion, exhibited by springs, pendulums, and even molecules. x
  • 18
    Making Waves
    Investigate waves, which transport energy but not matter. When two waves coexist at the same point, they interfere, resulting in useful and surprising applications. Also examine the Doppler effect, and see what happens when an object moves through a medium faster than the wave speed in that medium. x
  • 19
    Fluid Statics—The Tip of the Iceberg
    Fluid is matter in a liquid or gaseous state. In this lecture, study the characteristics of fluids at rest. Learn why water pressure increases with depth, and air pressure decreases with height. Greater pressure with depth causes buoyancy, which applies to balloons as well as boats and icebergs. x
  • 20
    Fluid Dynamics
    Explore fluids in motion. Energy conservation requires low pressure where fluid velocity is high, and vice versa. This relation between pressure and velocity results in many practical and sometimes counterintuitive phenomena, collectively called the Bernoulli effect—explaining why baseballs curve and how airplane speedometers work. x
  • 21
    Heat and Temperature
    Beginning a new section, learn that heat is a flow of energy driven by a temperature difference. Temperature can be measured with various techniques but is most usefully quantified on the Kelvin scale. Investigate heat capacity and specific heat, and solve problems in heating a house and cooling a nuclear reactor. x
  • 22
    Heat Transfer
    Analyze heat flow, which involves three important heat-transfer mechanisms: conduction, which results from direct molecular contact; convection, involving the bulk motion of a fluid; and radiation, which transfers energy by electromagnetic waves. Study examples of heat flow in buildings and in the sun's interior. x
  • 23
    Matter and Heat
    Heat flow into a substance usually raises its temperature. But it can have other effects, including thermal expansion and changes between solid, liquid, and gaseous forms—collectively called phase changes. Investigate these phenomena, starting with an experiment in which Professor Wolfson pours liquid nitrogen onto a balloon filled with air. x
  • 24
    The Ideal Gas
    Delve into the deep link between thermodynamics, which looks at heat on the macroscopic scale, and statistical mechanics, which views it on the molecular level. Your starting point is the ideal gas law, which approximates the behavior of many gases, showing how temperature, pressure, and volume are connected by a simple formula. x
  • 25
    Heat and Work
    The first law of thermodynamics relates the internal energy of a system to the exchange of heat and mechanical work. Focus on isothermal (constant temperature) and adiabatic (no heat flow) processes, and see how they apply to diesel engines and the atmosphere. x
  • 26
    Entropy—The Second Law of Thermodynamics
    Turn to an idea that has been compared to a work of Shakespeare: the second law of thermodynamics. According to the second law, entropy, a measure of disorder, always increases in a closed system. Order can only increase at the cost of even greater entropy elsewhere in the system. x
  • 27
    Consequences of the Second Law
    The second law puts limits on the efficiency of heat engines and shows that humankind's energy use could be better planned. Learn why it makes sense to exploit low-entropy, high-quality energy for uses such as transportation, motors, and electronics, while using high-entropy random thermal energy for heating. x
  • 28
    A Charged World
    Embark on a new section of the course, devoted to electromagnetism. Begin by investigating electric charge, which is a fundamental property of matter. Coulomb's law states that the electric force depends on the product of the charges and inversely on the square of the distance between them. x
  • 29
    The Electric Field
    On of the most important ideas in physics is the field, which maps the presence and magnitude of a force at different points in space. Explore the concept of the electric field, and learn how Gauss's law describes the field lines emerging from an enclosed charge. x
  • 30
    Electric Potential
    Jolt your understanding of electric potential difference, or voltage. A volt is one joule of work or energy per coulomb of charge. Survey the characteristics of voltage—from batteries, to Van de Graaff generators, to thunderstorms, which discharge lightning across a potential difference of millions of volts. x
  • 31
    Electric Energy
    Study stored electric potential energy in fuels such as gasoline, where the molecular bonds represent an enormous amount of energy ready to be released. Also look at a ubiquitous electronic component called the capacitor, which stores an electric charge, and discover that all electric fields represent stored energy. x
  • 32
    Electric Current
    Learn the definition of the unit of electric current, called the ampere, and how Ohm's law relates the current in common conductors to the voltage across the conductor and the conductor's resistance. Apply Ohm's law to a hard-starting car, and survey tips for handling electricity safely. x
  • 33
    Electric Circuits
    All electric circuits need an energy source, such as a battery. Learn what happens inside a battery, and analyze simple circuits in series and in parallel, involving one or more resistors. When capacitors are incorporated into circuits, they store electric energy and introduce time dependence into the circuit's behavior. x
  • 34
    Magnetism
    In this introduction to magnetism, discover that magnetic phenomena are really about electricity, since magnetism involves moving electric charge. Learn the right-hand rule for the direction of magnetic force. Also investigate how a current-carrying wire in a magnetic field is the principle behind electric motors. x
  • 35
    The Origin of Magnetism
    No matter how many times you break a magnet apart, each piece has a north and south pole. Why? Search for the origin of magnetism and learn how magnetic field lines differ from those of an electric field, and why Earth has a magnetic field. x
  • 36
    Electromagnetic Induction
    Probe one of the most fascinating phenomena in all of physics, electromagnetic induction, which shows the direct relationship between electric and magnetic fields. In a demonstration with moving magnets, see how the relative motion of a magnet and an electric conductor induces current in the conductor. x
  • 37
    Applications of Electromagnetic Induction
    Survey some of the technologies that exploit electromagnetic induction: the electric generators that supply nearly all the world's electrical energy, transformers that step voltage up or down for different uses, airport metal detectors, microphones, electric guitars, and induction stovetops, among many other applications. x
  • 38
    Magnetic Energy
    Study the phenomenon of self-inductance in a solenoid coil, finding that the magnetic field within the coil is a repository of magnetic energy, analogous to the electric energy stored in a capacitor. Close by comparing the complementary aspects of electricity and magnetism. x
  • 39
    AC/DC
    Direct current (DC) is electric current that flows in one direction; alternating current (AC) flows back and forth. Learn how capacitors and inductors respond to AC by alternately storing and releasing energy. Combining a capacitor and inductor in a circuit provides the electrical analog of simple harmonic motion introduced in Lecture 17. x
  • 40
    Electromagnetic Waves
    Explore the remarkable insight of physicist James Clerk Maxwell in the 1860s that changing electric fields give rise to magnetic fields in the same way that changing magnetic fields produce electric fields. Together, these changing fields result in electromagnetic waves, one component of which is visible light. x
  • 41
    Reflection and Refraction
    Starting a new section of the course, discover that light often behaves as rays, which change direction at boundaries between materials. Investigate reflection and refraction, answering such questions as, why doesn't a dust mote block data on a CD? How do mirrors work? And why do diamonds sparkle? x
  • 42
    Imaging
    See how curving a mirror or a piece of glass bends parallel light rays to a focal point, allowing formation of images. Learn how images can be enlarged or reduced, and the difference between virtual and real images. Use your knowledge of optics to solve problems in vision correction. x
  • 43
    Wave Optics
    Returning to themes from Lecture 18 on waves, discover that when light interacts with objects comparable in size to its wavelength, then its wave nature becomes obvious. Examine interference and diffraction, and see how these effects open the door to certain investigations, while hindering others. x
  • 44
    Cracks in the Classical Picture
    Embark on the final section of the course, which covers the revolutionary theories that superseded classical physics. Why did classical physics need to be replaced? Discover that by the late 19th century, inexplicable cracks were beginning to appear in its explanatory power. x
  • 45
    Earth, Ether, Light
    Review the famous Michelson-Morley experiment, which was designed to detect the motion of Earth relative to a conjectured "ether wind" that supposedly pervaded all of space. The failure to detect any such motion revealed a deep-seated contradiction at the heart of physics. x
  • 46
    Special Relativity
    Discover the startling consequences of Einstein's principle of relativity—that the laws of physics are the same for all observers in uniform motion. One result is that the speed of light is the same for all observers, no matter what their relative motion—an idea that overturns the concept of simultaneity. x
  • 47
    Time and Space
    Einstein's special theory of relativity upends traditional notions of space and time. Solve the simple formulas that show the reality of time dilation and length contraction. Conclude by examining the twins paradox, discovering why one twin who travels to a star and then returns ages more slowly than the twin back on Earth. x
  • 48
    Space-Time and Mass-Energy
    In relativity theory, contrary to popular views, reality is what's not relative—that is, what doesn't depend on one's frame of reference. See how space and time constitute one such pair, merging into a four-dimensional space-time. Mass and energy similarly join, related by Einstein's famous E = mc2. x
  • 49
    General Relativity
    Special relativity is limited to reference frames in uniform motion. Following Einstein, make the leap to a more general theory that encompasses accelerated frames of reference and necessarily includes gravity. According to Einstein's general theory of relativity, gravity is not a force but the geometrical structure of spacetime. x
  • 50
    Introducing the Quantum
    Begin your study of the ideas that revolutionized physics at the atomic scale: quantum theory. The word "quantum" comes from Max Planck's proposal in 1900 that the atomic vibrations that produce light must be quantized—that is, they occur only with certain discrete energies. x
  • 51
    Atomic Quandaries
    Apply what you've learned so far to work out the details of Niels Bohr's model of the atom, which patches one of the cracks in classical physics from Lecture 44. Although it explains the energies of photons emitted by simple atoms, Bohr's model has serious limitations. x
  • 52
    Wave or Particle?
    In the 1920s physicists established that light and matter display both wave- and particle-like behavior. Probe the nature of this apparent contradiction and the meaning of Werner Heisenberg's famous uncertainty principle, which introduces a fundamental indeterminacy into physics. x
  • 53
    Quantum Mechanics
    In 1926 Erwin Schrödinger developed an equation that underlies much of our modern quantum-mechanical description of physical reality. Solve a simple problem with the Schrödinger equation. Then learn how the merger of quantum mechanics and special relativity led to the discovery of antimatter. x
  • 54
    Atoms
    Drawing on what you now know about quantum mechanics, analyze how atoms work, discovering that the electron is not a point particle but behaves like a probability cloud. Investigate the exclusion principle, and learn how quantum mechanics explains the periodic table of elements and the principle behind lasers. x
  • 55
    Molecules and Solids
    See how atoms join to make molecules and solids, and how this leads to the quantum effects that underlie semiconductor electronics. Also probe the behavior of matter in ultradense white dwarfs and neutron stars, and learn how a quantum-mechanical pairing of electrons at low temperatures produces superconductivity. x
  • 56
    The Atomic Nucleus
    In the first of two lectures on nuclear physics, study the atomic nucleus, which consists of positively charged protons and electrically neutral neutrons, held together by the strong nuclear force. Many combinations of protons and neutrons are unstable; such nuclei are radioactive and decay with characteristic half lives. x
  • 57
    Energy from the Nucleus
    Investigate nuclear fission, in which a heavy, unstable nucleus breaks apart; and nuclear fusion, where light nuclei are joined. In both, the released energy is millions of times greater than the energy from chemical reactions and comes from the conversion of nuclear binding energy to kinetic energy. x
  • 58
    The Particle Zoo
    By 1960 a myriad of seeming elementary particles had been discovered. Survey the standard model that restored order to this subatomic chaos, describing a universe whose fundamental particles include six quarks; the electron and two heavier cousins; elusive neutrinos; and force-carrying particles such as the photon. x
  • 59
    An Evolving Universe
    Trace the discoveries that led astronomers to conclude that the universe began some 14 billion years ago in a big bang. Detailed measurements of the cosmic microwave background and other observations point to an initial period of tremendous inflation, followed by slow expansion and an as-yet inexplicable accelerating phase. x
  • 60
    Humble Physics—What We Don't Know
    Having covered the remarkable discoveries in physics, turn to the great gap in our current knowledge, namely the nature of the dark matter and dark energy that constitute more than 95% of the universe. Close with a look at other mysteries that physicists are now working to solve. x

Lecture Titles

Clone Content from Your Professor tab

Your professor

Richard Wolfson
Ph.D. Richard Wolfson
Middlebury College

Dr. Richard Wolfson is the Benjamin F. Wissler Professor of Physics at Middlebury College, where he also teaches Climate Change in Middlebury's Environmental Studies Program. He completed his undergraduate work at MIT and Swarthmore College, graduating from Swarthmore with a double major in Physics and Philosophy. He holds a master's degree in Environmental Studies from the University of Michigan and a Ph.D. in Physics from Dartmouth.

Professor Wolfson's published work encompasses diverse fields such as medical physics, plasma physics, solar energy engineering, electronic circuit design, observational astronomy, theoretical astrophysics, nuclear issues, and climate change. His current research involves the eruptive behavior of the sun's outer atmosphere, or corona, as well as terrestrial climate change and the sun–Earth connection.

Professor Wolfson is the author of several books, including the college textbooks Physics for Scientists and Engineers, Essential University Physics,and Energy, Environment, and Climate. He is also an interpreter of science for the nonspecialist, a contributor to Scientific American, and author of the books Nuclear Choices: A Citizen's Guide to Nuclear Technology and Simply Einstein: Relativity Demystified.

View More information About This Professor
Also By This Professor
View All Courses By This Professor

Reviews

Rated 4.1 out of 5 by 29 reviewers.
Rated 5 out of 5 by My math potbelly Dr. Wolfson’s PHYSICS AND OUR UNIVERSE: HOW IT ALL WORKS is an extremely comprehensive overview of physics. He goes as far as one can go using only high school algebra and trigonometry. 60 lectures is nevertheless a heavy time commitment. It is designed, I think, for three basic constituencies: 1) Young adults thinking of a career in physics. At that level, it gives a marvellous bird’s-eye view without forcing them to slog through the minutia of every sub-discipline (mechanics, thermodynamics, optics, etc.) using calculus. That will come soon enough if they stick with it. What is crucial at the beginning is to get a feeling for the whole, its trends, heroes and challenges. Is this fun for them or not? 2) Adults with a science or engineering background who wish to enjoy a good overview of the subject with some of the latest developments. They are likely to nod with pleasure during the whole thing. 3) The rest of us (ROU) with liberal arts backgrounds who may have enjoyed other TTC science courses and sadomasochistically WANT MORE. Let me review these audiences in more detail: 1) My sons are too old to consider physics as a possible career. Still, this lecture series is organized very visually to make each lesson as intuitive as possible. There are plenty of concrete experiments using simple objects, as well as a large flat-screen TV to explain each equation and calculation. Finally, almost every lesson ends with a problem and its solution for the mathematically inclined. 2) Not much to say here. The engineers know their pleasures. The cool flat screen is a clever way to introduce a lot of written material that could have been placed directly on our screen. But then, the reaction would likely be “What? I paid for a DVD and got a PowerPoint presentation?” Watch instead a man standing next to a large flat screen and that’s OK. More eye candy. 3) This is where I stand; very painful. I enjoyed Filippenko’s UNDERSTANDING THE UNIVERSE, Wysession’s HOW THE EARTH WORKS and Schumacher’s QUANTUM MECHANICS. I even lapped up the more philosophical offerings such as Goldman’s GREAT SCIENTIFIC IDEAS THAT CHANGED THE WORLD and Grabiner’s MATHEMATICS, PHILOSOPHY AND THE REAL WORLD. All great courses. So I should be OK, eh? I sat through the complete lecture series (2/day) to get a quick sense of the whole. Very, very impressed. Wolfson moves quickly and concisely. Nooo fat here. But the new concepts pile on rapidly, and since they are closely interrelated across the span of 60 lessons, you are quickly reduced to a wide-eyed, Homer Simpson-like stupor — I even nodded off before my significant other at one point....so mortifying — if you don’t feverishly review the Course Guidebook and/or Wikipedia after each course. A single sitting is obviously only the first step in a long journey for the likes of me. For some of the ROU, in other words, this is obviously a hugely ASPIRATIONAL PRODUCT. We buy it for the person we wish to become, not the sad excuse of a human being that greets us in the mirror every morning. To sum up, this is a very, very good and complete course. But it is also very, very challenging if your math pecs reflect the deficiencies of a liberal arts education combined with middle-aged forgetfulness. If the existing TTC science courses satisfy your needs, this one might be too much of a good thing. If they leave you hungering for more and you love math, I strongly recommend Wolfson's course. November 22, 2011
Rated 5 out of 5 by TTC and Dr. Wolfson have done it again. Professor Wolfson and The Teaching Company have collaborated to produce another excellent science course. This non-Calculus based college-level introductory course in physics is much more than a survey course because of its depth and its use of enough algebra and trigonometry to let you not only understand the ideas presented but to actually solve problems involving these concepts. The list of topics covered and the pace are almost breathtaking but will leave you feeling quite knowledgeable as well as satisfied. After finishing this course you will understand just how important the study of physics is because of the myriad of situations in which its concepts are essential to the advancement of mankind and why it is considered the fundamental science. October 15, 2011
Rated 5 out of 5 by Another Stepping Stone for TTC This course has many novel features including a giant screen TV, multiple videos, experiments almost every lectures and much deeper mathematical explanations of physical phenomenons. All of these combined with the already outstanding quality the teaching company is notorious for, serves not only to enhance the learning experience, but also to entertain and keep our interest peaked. I am amazed how much knowledge I had missed my entire life before watching this course. If you have not been versed already in the teaching company's collection, and you are interested in physics, I highly recommend this course. I had watched Dr Wolfson's first course on relativity many years ago and listened to his course on how the earth's climate behave, and I enjoyed both. My mind was literally changed by the course on relativity, no less. This course does contain a lot of what both other courses have to offer, but better. For those who have seen other TTC course on physics, I think you will really enjoy this one. A lot of new material, and the topics you may have seen before is covered more deeply and with an original breakdown of the different component. The course is also faster and more densely packed. It kept me coming back. Out of all the different courses from TTC I have watched, this is the most fun, deep, and immersive. Thank you TTC, and thanks to you Dr. Wolfson! October 6, 2011
Rated 2 out of 5 by ambiguous title & what the course does not deliver With the title "Physics and Our Universe: How It All Works" and the course description, I was expecting "it" to refer to how the universe works. However, what Professor Wolfson consistently delivers instead is how the physics describing the universe works. That is, the emphasis is on how physics goes about measuring and calculating different aspects of the universe, not on exploring the nature of the universe itself. What Wolfson does, he does admirably; but, this is not what I was expecting or interested in. December 6, 2014
2 next>>

Questions & Answers

Customers Who Bought This Course Also Bought

Some courses include Free digital streaming.

Enjoy instantly on your computer, laptop, tablet or smartphone.
Buy together as a Set
and
Save Up To $525.00
Choose a Set Format
$154.90
$179.90