This experience is optimized for Internet Explorer version 9 and above.

Please upgrade your browser

Send the Gift of Lifelong Learning!

Quantum Mechanics: The Physics of the Microscopic World

Quantum Mechanics: The Physics of the Microscopic World

Gifting Information


To send your gift, please complete the form below. An email will be sent immediately to notify the recipient of your gift and provide them with instructions to redeem it.

  • 500 characters remaining.

Frequently Asked Questions

With an eGift, you can instantly send a Great Course to a friend or loved one via email. It's simple:
1. Find the course you would like to eGift.
2. Under "Choose a Format", click on Video Download or Audio Download.
3. Click 'Send e-Gift'
4. Fill out the details on the next page. You will need to the email address of your friend or family member.
5. Proceed with the checkout process as usual.
Q: Why do I need to specify the email of the recipient?
A: We will send that person an email to notify them of your gift. If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: How will my friend or family member know they have a gift?
A: They will receive an email from The Great Courses notifying them of your eGift. The email will direct them to If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: What if my friend or family member does not receive the email?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at ( or call 1-800-832-2412 for assistance.
Q: How will I know they have received my eGift?
A: When the recipient clicks on their email and redeems their eGift, you will automatically receive an email notification.
Q: What if I do not receive the notification that the eGift has been redeemed?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at ( or call customer service at 1-800-832-2412 for assistance.
Q: I don't want to send downloads. How do I gift DVDs or CDs?
A: eGifting only covers digital products. To purchase a DVD or CD version of a course and mail it to a friend, please call customer service at 1-800-832-2412 for assistance.
Q: Oops! The recipient already owns the course I gifted. What now?
A: Great minds think alike! We can exchange the eGifted course for another course of equal value. Please call customer service at 1-800-832-2412 for assistance.
Q: Can I update or change my email address?
A: Yes, you can. Go to My Account to change your email address.
Q: Can I select a date in the future to send my eGift?
A: Sorry, this feature is not available yet. We are working on adding it in the future.
Q: What if the email associated with eGift is not for my regular Great Course account?
A: Please please email customer service at ( or call our customer service team at 1-800-832-2412 for assistance. They have the ability to update the email address so you can put in your correct account.
Q: When purchasing a gift for someone, why do I have to create an account?
A: This is done for two reasons. One is so you can track the purchase of the order in your ‘order history’ section as well as being able to let our customer service team track your purchase and the person who received it if the need arises.
Q: Can I return or Exchange a gift after I purchase it?
A: Because the gift is sent immediately, it cannot be returned or exchanged by the person giving the gift. The recipient can exchange the gift for another course of equal or lesser value, or pay the difference on a more expensive item
Video title

Priority Code


Quantum Mechanics: The Physics of the Microscopic World

Course No. 1240
Professor Benjamin Schumacher, Ph.D.
Kenyon College
Share This Course
4.1 out of 5
92 Reviews
77% of reviewers would recommend this series
Course No. 1240
Video Streaming Included Free

Course Overview

One day in 1900, German physicist Max Planck told his son that he had made a breakthrough as important as Isaac Newton's discovery of the workings of the universe. Planck had reached the surprising conclusion that light behaves as if it is packaged in discrete amounts, or quanta, a seemingly simple observation that would lead to a powerful new field of physics called quantum mechanics.

In the following decades, a series of great physicists built on Planck's discovery, including Albert Einstein, Niels Bohr, Louis de Broglie, Werner Heisenberg, Erwin Schrödinger, Richard Feynman, and many others, developing quantum mechanics into the most successful physical theory ever devised—the general framework that underlies our understanding of nature at its most fundamental level.

Quantum mechanics gives us a picture of the world that is so radically counterintuitive that it has changed our perspective on reality itself, raising profound questions about concepts such as cause and effect, measurement, and information. Despite its seemingly mysterious nature, quantum mechanics has a broad range of applications in fields such as chemistry, computer science, and cryptography. It also plays an important role in the development and innovation of some of today's most amazing—and important—technologies, including lasers, transistors, microscopes, semiconductors, and computer chips.

Quantum Mechanics: The Physics of the Microscopic World gives you the logical tools to grasp the paradoxes and astonishing insights of quantum mechanics in 24 half-hour lectures designed specifically for nonscientists and taught by award-winning Professor Benjamin Schumacher of Kenyon College.

No comparable presentation of this subject is so deep, so challenging, and yet accessible. Quantum Mechanics is generously illustrated with diagrams, demonstrations, and experiments and is taught by a professor who is both a riveting lecturer and a pioneer in the field, for Professor Schumacher is an innovator in the exciting new discipline of quantum information.

Think Like a Physicist

Working on the principle that any discovery made by the human mind can be explained in its essentials to the curious learner, Professor Schumacher teaches you how to reason like a physicist in working out the features of the quantum world. After taking this course, the following apparently inexplicable phenomena will make sense to you as logical outcomes of quantum processes:

  • That quantum particles travel through space in the form of waves that spread out and are in many places at the same time
  • That quantum mechanics takes us to a bedrock level of reality where objects are utterly simple, identical in every respect
  • That two quantum particles can interact at a distance in a way that seems almost telepathic—a phenomenon that Albert Einstein called "spooky"
  • That even in the complete vacuum of empty space, there is still a vast amount of energy bubbling into and out of existence

Regarding the last phenomenon, you could say that quantum mechanics not only changes our view of everything, it also changes our view of "nothing!"

Quantum Puzzles

Quantum mechanics has even entered popular language with expressions such as "quantum leap," which is often used inaccurately to mean a radical transformation. In quantum mechanics, a quantum leap is the minimum change in the energy level of an electron, related to the discrete units of light energy discovered by Max Planck.

Another familiar expression is the "uncertainty principle," an idea formulated by Werner Heisenberg in the 1920s. Again, popular usage can be misleading, since one often hears the term used to mean the unavoidable disturbance caused by making an observation. But in quantum mechanics the concept refers to an elementary feature of the microworld—that certain properties have no well-defined values at all.

Little wonder that quantum mechanics is one of the few fields in which philosophical speculation goes hand in hand with scientific breakthroughs. Consider these quantum puzzles that have striking philosophical implications:

  • Schrödinger's cat: Erwin Schrödinger noted that the standard Copenhagen interpretation of quantum mechanics makes it possible for a cat to be considered simultaneously dead and alive when exposed to a potentially lethal quantum situation.
  • Bell's theorem: John Bell showed that we must either give up the idea that particles have definite properties before they are measured, or we must imagine that all the particles in the universe are connected by a web of instantaneous communication links.
  • Many-worlds interpretation: In a scenario adopted by many science fiction authors, Hugh Everett III argued that every possible outcome of every quantum event takes place in a limitless branching series of parallel universes—of which we see only one.

Clear, Enlightening, and Thorough

Quantum Mechanics begins by exploring the origin of quantum mechanics and its golden age of discoveries in the early 20th century before taking you deeply into the key concepts and methods of the discipline. Then Professor Schumacher rounds out the course with a discussion of selected topics, including the potentially revolutionary applications of quantum cryptography and quantum computing. Throughout, he adheres to the following very helpful ground rules, tailored to give those without any previous preparation in math and physics a clear, enlightening, and thorough introduction to quantum mechanics:

  • He presents the real theory of quantum mechanics, not a superficial popularization.
  • He simplifies the subject to highlight fundamental principles.
  • He uses thought experiments, or hypothetical examples, as a tool for probing quantum phenomena.
  • He teaches you rudimentary symbols and rules that allow you to calculate the outcome of various quantum experiments.

One thought experiment that Professor Schumacher returns to involves a Mach-Zehnder interferometer, a simple arrangement of mirrors and detectors that illustrates basic properties and paradoxes of quantum mechanics. By considering the different paths that a photon can take through the interferometer, you discover such key principles as constructive and destructive interference, Max Born's probabilistic explanation of quantum phenomena, and Niels Bohr's concept of complementarity that led to the Copenhagen interpretation—the view of quantum mechanics since the 1920s.

Lucid, witty, and intensely interesting, Dr. Schumacher's lectures are illustrated with scores of insightful graphics. You are also introduced to a celebrated visual aid used by physicists themselves: the Feynman diagram, made famous by Nobel Prize–winner Richard Feynman as a cartoon-like shorthand for keeping track of quantum particles as they ceaselessly interact, change their identities, and even move backward through time!

Be Part of a Great Tradition

Richard Feynman was a graduate student of the eminent theoretical physicist John A. Wheeler—and so was Professor Schumacher, who earned the last Ph.D. that Dr. Wheeler supervised. Wheeler, in turn, was mentored by Niels Bohr, who studied with Ernest Rutherford, one of the pioneers of nuclear physics at the turn of the 20th century. Therefore, as you watch Quantum Mechanics, you are part of an unbroken chain of thinkers who have transmitted ideas and added to them across the decades, pondering, probing, and making remarkable discovery after discovery to uncover the secrets of our physical world.

Hide Full Description
24 lectures
 |  30 minutes each
  • 1
    The Quantum Enigma
    Quantum mechanics is the most successful physical theory ever devised, and you learn what distinguishes it from its predecessor, classical mechanics. Professor Schumacher explains his ground rules for the course, which is designed to teach you some of the deep ideas and methods of quantum mechanics. x
  • 2
    The View from 1900
    You investigate the age-old debate over whether the physical world is discrete or continuous. By the 19th century, physicists saw a clear demarcation: Matter is made of discrete atoms, while light is a continuous wave of electromagnetic energy. However, a few odd phenomena remained difficult to explain. x
  • 3
    Two Revolutionaries—Planck and Einstein
    At the beginning of the 20th century, Max Planck and Albert Einstein proposed revolutionary ideas to resolve puzzles about light and matter. You explore Planck's discovery that light energy can only be emitted or absorbed in discrete amounts called quanta, and Einstein's application of this concept to matter. x
  • 4
    Particles of Light, Waves of Matter
    Light propagates through space as a wave, but it exchanges its energy in the form of particles. You learn how Louis de Broglie showed that this weird wave-particle duality also applies to matter, and how Max Born inferred that this relationship makes quantum mechanics inherently probabilistic. x
  • 5
    Standing Waves and Stable Atoms
    You explore the mystery of why atoms are stable. Niels Bohr suggested that quantum theory explains atomic stability by allowing only certain distinct orbits for electrons. Erwin Schrödinger discovered a powerful equation that reproduces the energy levels of Bohr's model. x
  • 6
    One of the most famous and misunderstood concepts in quantum mechanics is the Heisenberg uncertainty principle. You trace Werner Heisenberg's route to this revolutionary view of subatomic particle interactions, which establishes a trade-off between how precisely a particle's position and momentum can be defined. x
  • 7
    Complementarity and the Great Debate
    You focus on the Einstein-Bohr debate, which pitted Einstein's belief that quantum events can, in principle, be known in every detail, against Bohr's philosophy of complementarity—the view that a measurement of one quantum variable precludes a different variable from ever being known. x
  • 8
    Paradoxes of Interference
    Beginning his presentation of quantum mechanics in simplified form, Professor Schumacher discusses the mysteries and paradoxes of the Mach-Zehnder interferometer. He concludes with a thought experiment showing that an interferometer can determine whether a bomb will blow up without necessarily setting it off. x
  • 9
    States, Amplitudes, and Probabilities
    The interferometer from the previous lecture serves as a test case for introducing the formal math of quantum theory. By learning a few symbols and rules, you can describe the states of quantum particles, show how these states change over time, and predict the results of measurements. x
  • 10
    Particles That Spin
    Many quantum particles move through space and also have an intrinsic spin. Analyzing spin gives you a simple laboratory for exploring the basic ideas of quantum mechanics, and it is one of your key tools for understanding the quantum world. x
  • 11
    Quantum Twins
    Macroscopic objects obey the snowflake principle. No two are exactly alike. Quantum particles do not obey this principle. For instance, every electron is perfectly identical to every other. You learn that quantum particles come in two basic types: bosons, which can occupy the same quantum state; and fermions, which cannot. x
  • 12
    The Gregarious Particles
    You discover that the tendency of bosons to congregate in the same quantum state can lead to amazing applications. In a laser, huge numbers of photons are created, moving in exactly the same direction with the same energy. In superconductivity, quantum effects allow electrons to flow forever without resistance. x
  • 13
    Antisymmetric and Antisocial
    Why is matter solid, even though atoms are mostly empty space? The answer is the Pauli exclusion principle, which states that no two identical fermions can ever be in the same quantum state. x
  • 14
    The Most Important Minus Sign in the World
    At the fundamental level, bosons and fermions differ in a single minus sign. One way of understanding the origin of this difference is with the Feynman ribbon trick, which Dr. Schumacher demonstrates. x
  • 15
    When two particles are part of the same quantum system, they may be entangled with each other. In their famous "EPR" paper, Einstein and his collaborators Boris Podolsky and Nathan Rosen used entanglement to argue that quantum mechanics is incomplete. You chart their reasoning and Bohr's response. x
  • 16
    Bell and Beyond
    Thirty years after EPR, physicist John Bell dropped an even bigger bombshell, showing that a deterministic theory of quantum mechanics such as EPR violates the principle of locality—that particles in close interaction can't be instantaneously affected by events happening in another part of the universe. x
  • 17
    All the Myriad Ways
    Feynman diagrams are a powerful tool for analyzing events in the quantum world. Some diagrams show particles moving forward and backward in time, while other particles appear from nowhere and disappear again. All are possible quantum scenarios, which you learn how to plot. x
  • 18
    Much Ado about Nothing
    The quantum vacuum is a complex, rapidly fluctuating medium, which can actually be observed as a tiny attraction between two metal plates. You also discover that vacuum energy may be the source of the dark energy that causes the universe to expand at an ever-accelerating rate. x
  • 19
    Quantum Cloning
    You explore quantum information and quantum computing—Dr. Schumacher's specialty, for which he pioneered the concept "qubit," the unit of quantum information. You learn that unlike classical information, such as a book or musical recording, quantum information can't be perfectly copied. x
  • 20
    Quantum Cryptography
    The uncopyability of quantum information raises the possibility of quantum cryptography—an absolutely secure method for transmitting a coded message. This lecture tells how to do it, noting that a handful of banks and government agencies already use quantum cryptography to ensure the security of their most secret data. x
  • 21
    Bits, Qubits, and Ebits
    What are the laws governing quantum information? Charles Bennett has proposed basic rules governing the relationships between different sorts of information. You investigate his four laws, including quantum teleportation, in which entanglement can be used to send quantum information instantaneously. x
  • 22
    Quantum Computers
    You explore the intriguing capabilities of quantum computers, which don't yet exist but are theoretically possible. Using the laws of quantum mechanics, such devices could factor huge numbers, allowing them to easily decipher unbreakable conventional codes. x
  • 23
    Many Worlds or One?
    What is the fundamental nature of the quantum world? This lecture looks at three possibilities: the Copenhagen, hidden-variable, and many-worlds interpretations. The first two reflect Bohr's and Einstein's views, respectively. The last posits a vast, multivalued universe encompassing every possibility in the quantum realm. x
  • 24
    The Great Smoky Dragon
    In this final lecture, you ponder John A. Wheeler's metaphor of the Great Smoky Dragon, a creature whose tail appears at the start of an experiment and whose head appears at the end. But what lies between is as uncertain as the mysterious and unknowable path of a quantum particle. x

Lecture Titles

Clone Content from Your Professor tab

What's Included

What Does Each Format Include?

Video DVD
Video Download Includes:
  • Ability to download 24 video lectures from your digital library
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps
Video DVD
DVD Includes:
  • 24 lectures on 4 DVDs
  • 128-page printed course guidebook
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps

What Does The Course Guidebook Include?

Video DVD
Course Guidebook Details:
  • 128-page printed course guidebook
  • Photos & diagrams
  • Questions to consider
  • Timeline

Enjoy This Course On-the-Go with Our Mobile Apps!*

  • App store App store iPhone + iPad
  • Google Play Google Play Android Devices
  • Kindle Fire Kindle Fire Kindle Fire Tablet + Firephone
*Courses can be streamed from anywhere you have an internet connection. Standard carrier data rates may apply in areas that do not have wifi connections pursuant to your carrier contract.

Your professor

Benjamin Schumacher

About Your Professor

Benjamin Schumacher, Ph.D.
Kenyon College
Dr. Benjamin Schumacher is Professor of Physics at Kenyon College, where he has taught for 20 years. He received his Ph.D. in Theoretical Physics from The University of Texas at Austin in 1990. Professor Schumacher is the author of numerous scientific papers and two books, including Physics in Spacetime: An Introduction to Special Relativity. As one of the founders of quantum information theory, he introduced the term qubit,...
Learn More About This Professor
Also By This Professor


Quantum Mechanics: The Physics of the Microscopic World is rated 4.1 out of 5 by 92.
Rated 1 out of 5 by from Worst presenter, doe not know his subject The worst presenter out of many courses.Mumbles, does not enunciate, hard to understand.Does not open his mouth. He obviously is NOT a physicist. It seems that he does not understand some fundamental concepts. History part is OK, but the science part is bad.
Date published: 2016-12-23
Rated 5 out of 5 by from A very nice overview of Quantum Mechanics The course is presented by Professor Schumacher who is a Professor of Physics doing research work in the area. He is clearly up to date on what is going on in this area. I found the course very enlightening, and made me much more aware of what is really entailed in the subject. The concepts are not always easy to understand at first blush, but he discusses them in enough depth so that they can be understood. He approaches it from an historical perspective that shows you what events and concepts led up to our present understanding, and then progresses to look at some of the areas in which quantum mechanics is involved, as in cryptography and quantum computing. A few math equations were introduced, but not many, and they are understandable in the way they are presented; not from the mathematical perspective, but from how they are used in understanding the concepts. I found this course very rewarding, and there are a number of lectures that I will go back to for better understanding now that I have finished the course.
Date published: 2016-11-28
Rated 2 out of 5 by from Too slow, Too Little, Jumpy I am returning this course after about an hour or two of sampling various lectures for the following reasons. One, is that the rate is too slow. The professor takes a very long time to say things in my opinion. I was bored. Second, I was looking forward to a college level of teaching and, in my opinion, it was much less than that. I felt I was in high school or a popular lecture for complete novices. Perhaps that is what he wanted to achieve, but it was much too little for me. Also, I would have expected many more graphics. Equations are good too! In my readings etc. I've found that QM requires math to really be intuitive - however, I am certainly not knowledgeable of QM math. Finally, for all his slowness, he introduced concepts and terms without explaining them. This is not in all cases. In fact, many were introduced with too many explanations. It seems to me that he did not delve into the depths of his topic.
Date published: 2016-11-02
Rated 4 out of 5 by from Quantum Mechanics for fun and understanding Good presentation of Quantum Mechanics without the math structure that typically overwhelms the undergraduate level student. The presentation by Dr. Schumacher reflects a deep understanding of the subject and yet the ability to present Quantum concepts in a very simple way.
Date published: 2016-07-21
Rated 5 out of 5 by from Mind Stretching & Highly Recommended “Mind stretching” is the adjective that Professor Schumacher uses in the last sentence of the last lecture to describe Quantum Mechanics. This is an excellent choice to summarize Quantum Mechanics. Quantum Mechanics is the set of rules for the subatomic particles that comprise all matter as we know it. But these rules of Quantum Mechanics are completely different than the normal everyday rules that apply to all of the matter that we can see and interaction with. Understanding these rules is whether the mind stretching occurs. You do not need to have a degree in mathematics, physics or any of the other sciences in order to understand the concepts and principles being presented by Professor Schumacher. The concepts are simplified to their basics and presented in common language with the aid of analogies, props, visual aids, and graphics. The most difficult lecture is probably Lecture #9 and Professor Schumacher states that at the beginning of the lecture. You will still get a lot of good information from the remaining lectures if you don’t understand Lecture #9. However, you will get a lot more from the lectures if you get an understanding of the principles in Lecture #9. I actually viewed Lecture #9 twice. The first viewing was to get the general overall concept being presented and the second viewing was to get the details of this concept. I suggest viewing Lecture #9 twice as the best way to understand its concepts. In this course, Professor Schumacher suggested the slogan “Quantum Mechanics is what matters when nobody is watching.” I enjoyed this slogan and I definitely agree with it. If you don’t understand this slogan now, you will by the time you complete this course. I highly recommend this course to learn the basics of Quantum Mechanics and the rules that apply to the subatomic world.
Date published: 2016-07-14
Rated 5 out of 5 by from Have to pay attention! This course is NOT for the casual viewer. It is, however, a great overview and introduction to the theory of quantum mechanics. It has some mathematical concepts which will boggle most lay people. I am an engineer and could almost keep up! Those provisos in place, this is an excellent course taught exceptionally well. I really felt that I learned something insightful about the history of quantum theory, the key aspects of the theory, the personalities involved, the conceptual challenges raised by the theory, and possible future applications of quantum mechanics. Ask me six months from now, and I will have forgotten most of the specifics, but I think some of the foundational stuff will be with me from now on! Recommended.
Date published: 2016-04-17
Rated 4 out of 5 by from
Date published: 2016-04-11
Rated 5 out of 5 by from An Excellent Update Quantum Mechanics is the "physics of the 20th century." In school, we learned the classic physics of the 19th. We learned chemistry using the notions of early 20th century quantum mechanics. But, if you have been out of school for 20 years, quantum mechanics has moved on. This is a very understandable explanation of quantum mechanics up thru very recent years. The course goes thru the part that is clearly known up to the edge of today's speculation. Very well done with an appropriate expectation of mathematical and science background.
Date published: 2016-02-01
  • y_2017, m_2, d_23, h_16
  • bvseo_bulk, prod_bvrr, vn_bulk_0.0
  • cp_1, bvpage1
  • co_hasreviews, tv_7, tr_85
  • loc_en_US, sid_1240, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.0
  • CLOUD, getContent, 10.63ms

Questions & Answers


1-10 of 11 Questions
1-10 of Questions

Customers Who Bought This Course Also Bought