This experience is optimized for Internet Explorer version 9 and above.

Please upgrade your browser

Video title

Priority Code

Cancel
Understanding Genetics: DNA, Genes, and Their Real-World Applications

Understanding Genetics: DNA, Genes, and Their Real-World Applications

Professor David Sadava Ph.D.
City of Hope Medical Center, Claremont Colleges
Course No.  1533
Course No.  1533
Share:
Video or Audio?
While this set works well in both audio and video format, one or more of the courses in this set feature graphics to enhance your learning experience, including illustrations, images of people and event, and on-screen text.
Which Format Should I Choose? Video Download Audio Download DVD CD
Watch or listen immediately with FREE streaming
Available on most courses
Stream using apps on your iPad, iPhone, Android, or Kindle Fire
Available on most courses
Stream to your internet connected PC or laptop
Available on most courses
Download files for offline viewing or listening
Receive DVDs or CDs for your library
Play as many times as you want
All formats include Free Streaming
All formats include Free Streaming

Course Overview

About This Course

24 lectures  |  30 minutes per lecture

We use it routinely to cure diseases, solve crimes, and reunite families. Yet we've known about it for only 60 years. And what we're continuing to learn about it every day has the potential to transform our health, our nutrition, our society, and our future. What is this powerful mystery?

It is DNA—deoxyribonucleic acid, the self-replicating material present in nearly all living organisms. Award-winning teacher, author, and cancer researcher Dr. David Sadava unlocks its mysteries in his new course, Understanding Genetics: DNA, Genes, and Their Real-World Applications. He guides us through decades of scientific discovery and the weighty implications for us, as individuals and as a society.

View More

We use it routinely to cure diseases, solve crimes, and reunite families. Yet we've known about it for only 60 years. And what we're continuing to learn about it every day has the potential to transform our health, our nutrition, our society, and our future. What is this powerful mystery?

It is DNA—deoxyribonucleic acid, the self-replicating material present in nearly all living organisms. Award-winning teacher, author, and cancer researcher Dr. David Sadava unlocks its mysteries in his new course, Understanding Genetics: DNA, Genes, and Their Real-World Applications. He guides us through decades of scientific discovery and the weighty implications for us, as individuals and as a society.

< p>Genetics: The Science of Heredity

How are the traits of an organism—be it a fern or a human father—passed on to its offspring? This course outlines the history of the science of genetics and explains in detail what we have learned in recent decades about the building blocks—DNA.

Dr. Sadava, a working scientist who draws on examples from his own research, shows us how understanding genetics allows us to improve medical treatment and nutrition, vastly improving our health and quality of life.

Understanding genetics is also a critical step toward understanding our human identity. Examining our DNA—how it works and what happens when something goes wrong—enables us to see the roots of how our bodies work, why we get sick, and how traits are passed through families.

Enjoy this rare opportunity to peer over the shoulder of a working scientist; learn how he puzzles through the problems of genetics to find meaningful solutions that can save lives. Dr. Sadava shares cutting-edge research guided by his passion to help laypeople understand the meaning and importance of genetics.

Genetics' Long and Fascinating History

Our understanding of human development has certainly evolved since ancient Greek times, when Aristotle thought that the ingredients in semen were reorganized by menstrual fluid during intercourse to produce an embryo. And as late as the 17th century, Antonie Van Leeuwenhoek thought he saw tiny, fully formed babies when he looked under a microscope at sperm.

Other past civilizations, however, knew more about genetics than we might think. For example, Egyptians successfully bred the date palm 4,000 years ago to improve the quality and quantity of their fruit crop. In Asia and the Near East 3,500 years ago, horses were bred for speed in racing.

But while humans have worked to improve plant and animal characteristics for thousands of years, we've only come to truly understand what genes are made of and how they work during the past century.

Insight into a Puzzle

Understanding genetics is like sitting down to work a massive puzzle. With each piece you examine, think through, and solve, you glean a new and amazing insight into humanity. Put several pieces together, and you can treat or cure a disease, save a developing fetus from a fatal birth defect, catch a criminal, or reunite a family.

DNA, genes, proteins, amino acids, and enzymes are the vocabulary of our being—what goes on inside our bodies and how our genes are expressed. To learn this vocabulary is to be conversant in who we are and what we can become.

To help us understand the role of proteins in DNA, Professor Sadava cites the example of boiling an egg. A protein's shape is sensitive to its surroundings and can be changed by heat. When you boil an egg—made of a protein called albumin—the heat of the water changes the albumin's structure to create a completely different consistency. As Professor Sadava reminds us, "You can't unboil an egg; changes are irreversible." Next time you're making egg salad, just think—you've transformed a protein!

Dr. Sadava loves to tell tales, and the stories he uses to introduce each lecture are the highlight of the course. He weaves in history, true crime, case studies of people with life-threatening diseases, and phenomena from the natural world to make genetics come to life. Then he steadfastly supports each story with explanatory science.

Professor Sadava deftly introduces us to the puzzle that is genetics, and shows how unlocking each piece helps solve significant real-world problems that affect everyone.

Each lecture begins with a helpful story that illustrates the importance of genetics. The course explicitly outlines the connections between the science of genetics and the health-related problems that plague us in modern society, and illuminates how studying genetics can be instrumental in solving those problems.

While Understanding Genetics is a vigorous and briskly paced course, you won't need a background in biology or chemistry. You'll feel challenged, but you won't be left behind. Professor Sadava is passionate about his subject and extremely knowledgeable.

Genetics in the News

Should we allow cloning? How can we treat obesity? Why do different ethnic groups have higher rates of particular diseases than others? Countless questions of biology prompt heated discussions in the classroom, the legislature, and the courtroom. Obtaining a basic and current knowledge of how genetics works helps inform our ideas and opinions on these important issues.

Many of us are touched by diseases caused by genetic mutations or flaws—such as cystic fibrosis, diabetes, cancer, and sickle cell anemia. In the face of life-threatening, debilitating diseases, Professor Sadava gives us hope through research and discoveries made every day in the field of genetics.

He tells the story of one couple whose young son had cystic fibrosis, the most common inherited disease. Genetic testing prior to their next pregnancy enabled them to implant an embryo without the cystic fibrosis genes into the mother's uterus. The result: the couple was able to have a healthy daughter.

Only in the past few decades have scientists begun to discover and isolate the particular genes that cause certain diseases or conditions and to conduct the research that enables us to actually change genetics.

As Professor Sadava reminds us throughout the course, genetics is not destiny. How we grow and develop is strongly influenced by our environment. But understanding genetics provides us with a wealth of information that can help improve the health and quality of life for everyone.

View Less
24 Lectures
  • 1
    Our Inheritance
    From earliest history, humans have bred plants and animals for desirable and productive characteristics. And they have wondered how it all works. Professor Sadava gives us a brief, fascinating history of genetics and introduces us to the three major unifying ideas in biological science, ideas which form the cornerstone of this course. x
  • 2
    Mendel and Genes
    Monk and scientist Gregor Mendel, working in the late 1800s, learned through pea-plant experiments that each parent's characteristics were particulate, that is, chemically independent. His meticulous research—the beginning of modern genetics—languished for nearly 40 years before its value was discovered. x
  • 3
    Genes and Chromosomes
    Where do you find a gene? Within each living cell is a nucleus, within the nucleus is a chromosome, and on that chromosome is the gene. Beginning with the cell, the unit of biological continuity, this lecture describes the physical and chemical environment of the gene. It shows us that you don't have to be a geneticist to figure out genetics, as a group of rabbis in A.D. 500 learned. x
  • 4
    The Search for the Gene—DNA
    How did research on smoking and lung cancer help scientists figure out that DNA, the genetic material, was damaged in the tumor cells? Professor Sadava tells us how scientists first determined what they were looking for and then found the circumstantial evidence that pointed to DNA. x
  • 5
    DNA Structure and Replication
    The double helix model for DNA is one of the most recognizable scientific icons of our time. This lecture details how Watson and Crick built on the work of earlier researchers to solve the puzzle of the structure of DNA—the double helix. x
  • 6
    DNA Expression in Proteins
    Proteins are made up of chains of 20 amino acids ordered in a particular sequence for each protein. Humans cannot produce eight of those 20 amino acids, although we still need them for proper nutrition. Professor Sadava explains what proteins are, how they relate to DNA, and why they're significant to us. x
  • 7
    Genes, Enzymes, and Metabolism
    Enzymes, which are encoded in our genes, are responsible for most chemical conversions in our bodies. An enzyme sends a signal that creates a biochemical pathway for the process of changing something we consume into something else we need or must get rid of. This lecture explains how metabolism is hard-wired into our genes. x
  • 8
    From DNA to Protein
    In 2004 traces of a poison called ricin were found in a U.S. Senate mailroom. Only 1/10,000 of an ounce of ricin can be fatal. Ricin's enzymes inhibit gene expression; as a result, when ricin is introduced to animal cells, the cells die. This lecture explains how gene expression happens. x
  • 9
    Genomes
    The 24,000 genes that are expressed in humans represent only 2 percent of the entire genome. This lecture explains the history of the Human Genome Project, which grew out of scientists' studies on the effects of radiation on the survivors of the atom bombs in Hiroshima and Nagasaki. x
  • 10
    Manipulating Genes—Recombinant DNA
    By studying how bacteria successfully protect themselves from an attacking virus, scientists discovered that bacteria make an enzyme that recognizes a particular DNA sequence in the virus and cuts the DNA strand at that sequence. As a result of this discovery, scientists learned to splice DNA, creating recombinant DNA, which was initially controversial and now holds vast possibilities for the future. x
  • 11
    Isolating Genes and DNA
    Learn how genetics is used to understand and work toward the cure of a particular disease. After methods for analyzing DNA and chromosomes were developed rapidly in the 1980s, the scientific community tried a new approach called reverse genetics. As a result of this work, scientists isolated the gene that is missing in individuals who have muscular dystrophy. x
  • 12
    Biotechnology—Genetic Engineering
    Insulin that treated individuals with diabetes, whose bodies don't create insulin (or enough of it) on their own, used to come from animals. Animal insulin, however, contains a different sequence of amino acids, so some people's bodies rejected it. The method of manufacturing insulin developed at a California hospital is how all insulin used to treat diabetics is now made. x
  • 13
    Biotechnology and the Environment
    We can use bacteria to solve man-made problems, such as landmines, oil spills, toxic waste, and pollution. Scientists are working to genetically engineer organisms whose traits can be useful in cleaning up our world. x
  • 14
    Manipulating DNA by PCR and Other Methods
    What's the real science behind the dinosaurs that come to life in the movie Jurassic Park? Professor Sadava explains how scientists extract DNA from fossils, and what we can learn about ancient creatures from their genes. This lecture also covers DNA sequencing methods. x
  • 15
    DNA in Identification—Forensics
    In the aftermath of the 2004 tsunami in Sri Lanka, hundreds of children were separated from their parents. When several couples were claiming one baby as their own, DNA testing enabled doctors to reunite the real parents with their baby. This kind of testing is frequently used in crime-solving today. x
  • 16
    DNA and Evolution
    Charles Darwin's travels to the Galapagos Islands helped him understand that different species come from a common ancestor. This lecture explains the genetic components of Darwin's theories. x
  • 17
    DNA and Human Evolution
    Sickle cell disease is more frequently found in African Americans than in Caucasians. After studying this incurable condition, scientists discovered that carriers of sickle cell disease were resistant to malaria, a far more life-threatening sickness. Why? In this lecture, Professor Sadava explores the role of genetic adaptation in human evolution. x
  • 18
    Molecular Medicine—Genetic Screening
    How do scientists detect particular genes that cause certain diseases? Professor Sadava details chemical processes used for genetic screening, and gives several examples of successful genetic tests and results. He describes testing for the effects of genes on drug susceptibility as the next frontier in screening technology. x
  • 19
    Molecular Medicine—The Immune System
    George Washington stemmed a smallpox epidemic by ordering his soldiers to be inoculated during an outbreak. Fifty years earlier, the slave Onesimus had advised Cotton Mather, the Puritan minister, of the practice in his homeland of rubbing dried pus from a smallpox carrier onto a cut of a healthy person. This process created antibodies that resisted the disease. Professor Sadava uses these illustrations to explain how our cells fight disease. x
  • 20
    Molecular Medicine—Cancer
    Cancer develops when cells lose control over their normally regulated reproduction. Only 10 percent of cancers are inherited, but it is a genetic disease. This lecture explains how cancer cells are created and how they can be treated. x
  • 21
    Molecular Medicine—Gene Therapy
    So far gene therapy—the process of adding protein-coding DNA and a promoter sequence for its expression to an organism for medical benefit—has experienced some success in animals and small gains in humans. Professor Sadava shares cutting-edge research and experimentation. x
  • 22
    Molecular Medicine—Cloning and Stem Cells
    Stem cells and cloning are both controversial topics in the news. How do they really work? What is the science behind these genetic procedures, and what are their implications for us? x
  • 23
    Genetics and Agriculture
    Just three crops—corn, rice, and wheat—make up two-thirds of the world's food supply. Learn in this lecture how genetic experimentation on grains has resulted in significant increases in crop yields, which has meaningful ramifications for feeding the world's hungry. x
  • 24
    Biotechnology and Agriculture
    Changes in our environment affect the plants we grow and thus the food we eat. Biotechnology has enabled us to manipulate plants to adapt to different conditions, such as tomatoes that grow in salty soil. This final lecture explores the opportunities and controversies surrounding genetically modified plants. x

Lecture Titles

Clone Content from Your Professor tab

Your professor

David Sadava
Ph.D. David Sadava
City of Hope Medical Center, Claremont Colleges

Dr. David Sadava is Adjunct Professor of Cancer Cell Biology at the City of Hope Medical Center in Duarte, CA, and the Pritzker Family Foundation Professor of Biology, Emeritus, at The Claremont Colleges. Professor Sadava graduated from Carleton University as the science medalist with a B.S. with first-class honors in biology and chemistry. A Woodrow Wilson Fellow, he earned a Ph.D. in Biology from the University of California, San Diego. Following postdoctoral research at the Scripps Institution of Oceanography, he joined the faculty at Claremont, where he twice won the Huntoon Award for Superior Teaching and received numerous other faculty honors. He has been a visiting professor at the University of Colorado and at the California Institute of Technology. Professor Sadava has held numerous research grants and written more than 55 peer-reviewed scientific research papers, many with his undergraduate students as coauthors. His research concerns resistance to chemotherapy in human lung cancer, with a view to developing new, plant-based medicines to treat this disease. He is the author or coauthor of five books, including the recently published 10th edition of a leading biology textbook, Life: The Science of Biology, as well as a new biology textbook, Principles of Life.

View More information About This Professor
Also By This Professor
View All Courses By This Professor

Reviews

Rated 4.5 out of 5 by 35 reviewers.
Rated 5 out of 5 by THOROUGH, DETAILED, CLEAR This review refers to the DVDs. For the lay person with no scientific background who desires an understandable introduction to this complex subject, TGC has scored another winner with this series of lectures. Dr Sadava leads you into the field with a brief touch of history and then lays a groundwork of the basic issues one must grasp in straight forward, clear explanations. I agree with the other reviewers that his leading off his lectures with a brief story to illustrate the nuances of what he proposes to cover is helpful. With this background, the later lectures, containing detailed descriptions of some of the frontiers where this relatively new field of science is on the cutting edge become more exciting to learn about. This series is highly recommended to everyone. I would suggest obtaining it with the visuals because they are important to follow his explanations. May 3, 2012
Rated 4 out of 5 by Mendel & Darwin Mendel and Darwin NOT reconciled Eye opener, world our children will live in. World undiscovered not too long ago. Excellent teaching. Captivating. But I expected more scientific approach in lesson 16 and 17. It is not science. Am I missing something? Is decease evolution? What good it is if I have greater resistance to malaria if I am suffocating and in pain for lack of oxygen. It seems that if I was born blind, could I say "good, light will not harm me". Professor says that it is not that penicillin would challenge bacteria to deal with it. He said that the gene to resist penicillin is there before hand. We last gene to manufacture vitamin C? Because we did not need it? Did we ever have one? Where is randomness in mutations about which he is speaking if there is "because". Mendel and Darwin did not read each other. That could be so. I think, If Mendel read Darwin, he would still be father of genetics. If Darwin had read Mendel, he might not published his work. Bu lab science is amazing. November 15, 2012
Rated 5 out of 5 by This course was excellent. Just the right level for a scientifically-minded, non-biologist.. April 14, 2012
Rated 5 out of 5 by Fascinating Prof. Sadava explains the topic quite well. He is easy to listen to and is obviously enthusiastic about his subject. He raises many new and thought-provoking issues. E.g., even in the evolution lectures, I had never heard the concept of walking upright being a single mutation. The course starts off slowly, but really starts moving in lec. 8. In fact, the partial (?) unraveling of DNA and the transcription to mRNA went by way too fast. I also never quite got the "big picture" of base pairs/genes/chromosomes. I.e., is a chromosome just one long strand of DNA? Where does a gene start and stop? How do you know how many genes there actually are on a chromosome? A few other questions: > Where did the subgenes in the immune system come from in the first place if you've never seen the antigen? > How does the human genome project make sense if everyone is different? A suggestion for an additional lecture: some cross discussion similar to the end of the "Major Transitions in Evolution" between Profs. Martin and Hawks. In fact, maybe a 3 way conversation. November 24, 2011
2 next>>

Questions & Answers

Customers Who Bought This Course Also Bought

Some courses include Free digital streaming.

Enjoy instantly on your computer, laptop, tablet or smartphone.