Dark Matter, Dark Energy: The Dark Side of the Universe

Course No. 1272
Professor Sean Carroll, Ph.D.
California Institute of Technology
Share This Course
4.7 out of 5
145 Reviews
86% of reviewers would recommend this product
Course No. 1272
Video Streaming Included Free

What Will You Learn?

  • Survey the visible universe, from the known stars in our galaxy to fascinating nebulae.
  • Peer into atoms to discover the nuclei and electrons that constitute ordinary matter.
  • Learn about a bold new field in nature known as quintessence.

Course Overview

There's more to the universe than meets the eye—a lot more. In recent years, scientists have discovered that 95% of the contents of the cosmos are invisible to our current methods of direct detection. Yet something is holding galaxies and galaxy clusters together, and something else is causing space to fly apart.

Scientists call these invisible components dark matter and dark energy; "dark" because these phenomena do not emit light, not because we are not learning more and more about them. In fact, dark matter and dark energy are the most eagerly studied subjects in astronomy and particle physics today.

If and when we discover this matter, it will further validate the "standard model" of physics which, so far, is the best description of how our universe works; if we cannot find this matter, or if it does not exist, then we will completely need to rethink the current "standard model" theory.

Join the exciting search for these mysterious phenomena in Dark Matter, Dark Energy: The Dark Side of the Universe, a mind-expanding, 24-lecture course taught by Dr. Sean Carroll, a theoretical physicist with a profound knowledge of the field. Starting with the early 20th-century work of Albert Einstein in theoretical physics and Edwin Hubble in observational astronomy, Dr. Carroll takes you through the key concepts of this revolutionary view of an expanding universe, concepts which have brought us—for the first time in history—to the brink of knowing what the universe is made of.

Welcome to the Dark Side

Everything you see with your eyes and with powerful instruments—stars, planets, galaxies, dust, and gas—and everything that you think of as atom-based matter is only 5% of what we now know exists. The rest is what Dr. Carroll calls the "dark sector," which consists of the following:

  • Dark matter: First proposed in the 1930s, the idea that there is missing mass influencing the behavior of galaxies began to look more and more likely from the 1970s on. We know that it is matter because we can detect its gravitational influence on visible matter, but we cannot see it. An inventory of the distribution of dark matter throughout space shows that it constitutes 25% of the energy density of the universe.
  • Dark energy: The greatest discoveries are the unexpected ones, which was the case in the late 1990s when two teams of astronomers competing to measure the rate at which the expansion of the universe is slowing down (as virtually everyone thought it must be) discovered that it is speeding up instead. A previously unknown, all-pervasive dark energy must be at work, representing 70% of the energy density of the universe.

Together, dark matter and dark energy account for all but a tiny fraction of everything there is; the ordinary matter that is left over is like the seasoning on the main dish. The story of how we arrived at this startling cosmic recipe is an absorbing drama that takes you through the breakthrough discoveries in astronomy and physics since the turn of the 20th century.

Concept by concept, Dark Matter, Dark Energy gives you the tools to appreciate this subject in depth. Dr. Carroll explains why scientists believe we live in a smooth, expanding universe that originated in a hot, dense state called the big bang.

You investigate the features of the infant universe that led to the large-scale structure we observe today, explore the standard model of particle physics and see how it provides the framework for understanding the interaction of all matter and radiation, and come to understand why dark matter and dark energy are logical consequences of a range of scientific theories and observations and how together they complete a grand picture of the universe.

Deduce the Existence of the Dark Sector

Several significant clues disclose the existence of dark matter and dark energy. In the case of dark matter, we have the evidence of:

  • Galaxy dynamics: The motions of the stars in galaxies and galaxies within clusters indicate that there is far more matter than is implied by visible stars and gas.
  • Echoes of the big bang: Variations in the leftover radiation from the big bang demonstrate that there must be dark matter pulling the ordinary matter we see.

Dark matter is clear to see compared to dark energy, which reveals itself subtly but unmistakably through:

  • Exploding stars: Type Ia supernovae provide a standard candle to measure the distances to faraway galaxies. By combining this information with redshift (which measures how fast a galaxy recedes), astronomers conclude that something is causing galaxies to recede at a faster and faster velocity.
  • Geometry of space: Observations that space is "flat" (with neither positive nor negative curvature) imply a total energy density for the universe that is stunningly consistent with the dark energy hypothesis.

Each of these techniques deduces the existence of dark matter or dark energy from the gravitational fields they cause. But what if our theory of gravity is faulty? Could adjustments to Einstein's general theory of relativity, which forms our modern understanding of gravity, do away with the need for the dark sector?

You explore a theory called Modified Newtonian Dynamics, which successfully dispenses with dark matter in individual galaxies. This theory fails, however, when applied to clusters and has nothing to say about the expansion of the universe.

"It is impossible, in principle, to think of a theory in this day and age that will completely do away with dark matter," says Dr. Carroll, pointing in particular to a convincing piece of evidence from the aftermath of the collision of two galaxies.

Known as the Bullet Cluster, it shows a central region of ordinary matter (evident through telltale x-ray emissions), on either side of which are far more extensive clouds of what can only be dark matter, disclosed by gravitational lensing.

Explaining away dark energy is similarly difficult, because it requires revising the fundamental equation of general relativity. "The problem is that this equation of Einstein's is actually quite remarkable," says Dr. Carroll. "If you try to mess with it just a little bit, you break it."

The overriding question remains: What are dark matter and dark energy? We do not yet know for certain, but physicists have come up with an array of creative ideas and ways to test them. Dark Matter, Dark Energy covers the most promising proposals and looks ahead to experiments that will dramatically improve our understanding of the dark sector.

Take a Voyage of Scientific Discovery

Dr. Carroll has a knack for explaining the latest complex picture of the universe in easy-to-follow terms—a skill honed by his more than 250 scientific seminars, colloquia, educational discussions, and popular talks. Relaxed, eloquent, wryly funny, and brimming with ideas, he has received the Graduate Student Council Teaching Award from MIT for his course on general relativity, as well as research grants from NASA, the U.S. Department of Energy, and the National Science Foundation.

With his expert guidance, your previously held ideas about the fate (and possibly the origin) of the universe will be altered permanently. A rich voyage of scientific discovery, Dark Matter, Dark Energy provides you with a comprehensive look at these two mysterious phenomena—and their startling implications for our understanding of the universe.

Hide Full Description
24 lectures
 |  Average 31 minutes each
  • 1
    Fundamental Building Blocks
    Scientists now have a complete inventory of the universe, which is composed of three basic constituents: Ordinary matter includes every kind of particle ever directly observed; dark matter consists of massive particles known only because of their gravitational effects; and dark energy is a smoothly distributed component that whose density does not change as the universe expands. x
  • 2
    The Smooth, Expanding Universe
    Imagine looking into a clear night sky with perfect vision. What would you see? This lecture surveys the visible universe—from the stars in our galaxy to the cloudy patches called nebulae that astronomer Edwin Hubble proved are galaxies in their own right—and Hubble's discovery that the universe is expanding. x
  • 3
    Space, Time, and Gravity
    Einstein taught us that space and time can be combined into spacetime, which has the ability to evolve and grow. Indeed, what we think of as gravity is just a manifestation of the curvature of spacetime. To find things in the universe—including dark matter and dark energy—all we have to do is to map out this curvature. x
  • 4
    Cosmology in Einstein's Universe
    The expansion of the universe is governed by its spatial curvature and energy density, both of which have specific ways of changing as the universe grows. These features are related to each other by Einstein's general theory of relativity, which can be used to model the past and possible future of the universe. x
  • 5
    Galaxies and Clusters
    Applying the laws of dynamics to galaxies and galaxy clusters, we find that more matter is required to account for their motions than can be observed. Some of the missing mass is hot gas; however, this is still not enough, and we need to invoke some new kind of particle in galaxies and clusters: dark matter. x
  • 6
    Gravitational Lensing
    Another way to detect invisible matter is to use light as a probe of the gravitational field. Passing through curved spacetime, the path of a light ray is deflected due to gravitational lensing. Lensing demonstrates the existence of gravitational fields where there is essentially no ordinary matter. x
  • 7
    Atoms and Particles
    We peer into the atom to discover the constituents of ordinary matter: nuclei and electrons. Nuclei are made of protons and neutrons, which in turn are made of quarks. Electrons and quarks are examples of fermions, or matter particles. There are also bosons, or force-carrying particles, such as photons and gluons. x
  • 8
    The Standard Model of Particle Physics
    In the 1960s and 1970s, physicists developed a comprehensive theory of known fermions and bosons. Now called the standard model, this theory fits an impressive amount of data, but it leaves two crucial puzzles: the hypothetical Higgs boson and the graviton, the carrier of the gravitational force. x
  • 9
    Relic Particles from the Big Bang
    Armed with the core principles of particle physics, we know enough about the early universe to predict how many of each type of particle should be left over from the Big Bang. These "relic abundances" are crucial to understanding the origin of dark matter and light elements. x
  • 10
    Primordial Nucleosynthesis
    The process of nucleosynthesis describes how protons and neutrons were assembled into light elements during the first few minutes after the Big Bang. We can observe these primordial elements today and check on Einsteinian cosmology and a stringent constraint on theories of dark matter. x
  • 11
    The Cosmic Microwave Background
    About 380,000 years after the Big Bang, the universe had cooled sufficiently for electrons and nuclei to combine into atoms allowing light to travel much more freely. The relic photons from this era are visible to us today as the cosmic microwave background, which holds clues to the composition and structure of the universe. x
  • 12
    Dark Stars and Black Holes
    Candidates for dark matter include small, dark stars called Massive Compact Halo Objects (MACHOs) and black holes. Such objects are ultimately composed of ordinary matter, of which there just isn't enough to account for the dark matter. We are forced to conclude that the dark matter is a new kind of particle. x
  • 13
    WIMPs and Supersymmetry
    Weakly interacting massive particles (WIMPs) are ideal candidates for what comprises dark matter. WIMPs may have their origins in supersymmetry, which posits a hidden symmetry between bosons and fermions, and predicts a host of new, as-yet-unobserved particles, including WIMPs. x
  • 14
    The Accelerating Universe
    In the late 1990s, two groups of astronomers found to their astonishment that the expansion of the universe is speeding up rather than slowing down. Such behavior can't be explained by any kind of matter and suggests the existence of an entirely new component: dark energy. x
  • 15
    The Geometry of Space
    Precise measurements of the cosmic microwave background let us measure the total energy density of the universe by observing the geometry of space. We find that the energy in matter alone is not enough, confirming the need for dark energy. x
  • 16
    Smooth Tension and Acceleration
    Dark energy is smoothly distributed throughout the universe and its density is nearly constant, even though the universe is expanding. Unlike gas under pressure in a container, dark energy is a kind of "negative pressure"—or tension—that imparts an accelerated expansion to the universe. x
  • 17
    Vacuum Energy
    The density and distribution of dark energy remain the same across all of space­time, but what exactly is dark energy? There are many possibilities, the simplest of which is vacuum energy—an constant amount of energy in every cubic centimeter of space itself. Vacuum energy is equivalent to Einstein's idea of the cosmological constant. x
  • 18
    Quintessence
    Another idea about dark energy is that it results from a new field in nature, analogous to the electromagnetic field but remaining persistent as the universe expands. This field is called quintessence. It would be observationally distinguishable from the cosmological constant. x
  • 19
    Was Einstein Right?
    We have inferred the existence of dark matter and dark energy from the gravitational fields they cause. In this lecture, we explore proposals that a modified theory of gravity might allow us to dispense with the need for invoking dark stuff. However, this turns out to be very difficult in practice. x
  • 20
    Inflation
    Before we had observational evidence that the universe is accelerating, cosmologists considered the possibility of a period of rapid acceleration at very early times—a scenario known as inflation. x
  • 21
    Strings and Extra Dimensions
    We know about the dark sector because of gravity, and string theory is an ambitious attempt to unify gravitation with the other forces of nature into a theory of everything. String theory promises a theory of quantum gravity, but it also predicts extra, unseen spatial dimensions that are difficult to test. x
  • 22
    Beyond the Observable Universe
    The speed of light and the age of the observable universe are finite. That means we can't see the whole universe because our vision can only stretch so far. The "multi­verse"—a hypothesis of regions where conditions are very different from those we see in our observable universe—may help explain properties of dark energy. x
  • 23
    Future Experiments
    Astronomers are designing new observatories to probe the acceleration of the universe and other cosmic phenomena. Physicists are also looking forward to new experiments that will dramatically improve our understanding of particles and forces, and how ordinary matter fits in with dark matter and dark energy. x
  • 24
    The Past and Future of the Dark Side
    The concordance cosmology is an excellent fit to a variety of data, but it presents us with deep puzzles: What are dark matter and dark energy? Why do they have the densities they do? Our own universe seems unnatural to us. That's good news, as it is a clue to the next level of understanding. x

Lecture Titles

Clone Content from Your Professor tab

What's Included

What Does Each Format Include?

Video DVD
Instant Video Includes:
  • Download 24 video lectures to your computer or mobile app
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps
Video DVD
DVD Includes:
  • 24 lectures on 4 DVDs
  • 160-page printed course guidebook
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps

What Does The Course Guidebook Include?

Video DVD
Course Guidebook Details:
  • 160-page printed course guidebook
  • Photos & illustrations
  • Charts & tables
  • Suggested readings

Enjoy This Course On-the-Go with Our Mobile Apps!*

  • App store App store iPhone + iPad
  • Google Play Google Play Android Devices
  • Kindle Fire Kindle Fire Kindle Fire Tablet + Firephone
*Courses can be streamed from anywhere you have an internet connection. Standard carrier data rates may apply in areas that do not have wifi connections pursuant to your carrier contract.

Your professor

Sean Carroll

About Your Professor

Sean Carroll, Ph.D.
California Institute of Technology
Professor Sean Carroll is a Senior Research Associate in Physics at the California Institute of Technology. He earned his undergraduate degree from Villanova University and his Ph.D. in Astrophysics from Harvard in 1993. Before arriving at Caltech, Professor Carroll taught in the Physics Department and the Enrico Fermi Institute at the University of Chicago, and did postdoctoral research at the Massachusetts Institute of...
Learn More About This Professor
Also By This Professor

Reviews

Dark Matter, Dark Energy: The Dark Side of the Universe is rated 4.7 out of 5 by 145.
Rated 5 out of 5 by from Clearly presented Actually, our astronomy club owns the DVD but I bought my own course so that I can review it at home. The lectures follow a logical progression of the topics and the speaker is fluent and knows the topic. It takes the student from only very basic knowledge through complex concepts without getting lost, but having the course to review and refresh makes it well worth owning the course.
Date published: 2018-09-03
Rated 5 out of 5 by from Well done This is an extremely well organized and informative presentation. The content is fascinating. The lecturer is superb. However, I did not realize when I bought it that it is somewhat outdated, e.g., before the Higgs boson was discovered, gravitational waves were discovered, or unlikelihood of dark matter interacting via the weak nuclear force was demonstrated. I strongly recommend this be updated.
Date published: 2018-09-01
Rated 5 out of 5 by from Still Well Worth Watching I agree with others that this is a great, but demanding course. It is not technical, since the most advanced math used is a few algebraic equations that are explained carefully.But the concepts are difficult, since they involve abstract ways of thinking about the entire universe, and its history. Carroll covers a great deal of theoretical material concerning particle physics, general relativity, quantum mechanics and even the basics of string theory. But he starts with the rudiments, and is careful to make it all comprehensible if you pay attention. At a few points he moves into philosophy, for example, in discussing whether the multiverse idea is really science. I found these discussions especially interesting. I watched a few lectures (like number 21, on string theory) three times, to make sure I got the points. It was worth it! Carroll is a clear and sometimes witty teacher. On occasion he gives us great anecdotes about the cosmologists of the last 100 years like Hubble and Gamow. This course was made in 2007. The graphics are primitive, as compared to more recent courses. I am no physicist, but I do not think much of the course is out of date. Carroll predicted that the Higgs boson would be found, and it was. He mentions the LIGO instrument as just getting started, and, sure enough, it detected gravity waves for the first time. So I do not think you need to worry yet about the courses's obsolescence, if you want to understand the basics of dark matter and energy. The guidebook has a lot of helpful information (for example, about scientific notation), but the lecture summaries are somewhat skimpy (given the difficult material covered). Once in a while Carroll covers a theory or a problem too quickly, and the guidebook may not help you figure it out. But these criticisms are minor. This is a deep dive into some of the most intriguing and important ideas in modern cosmology. It is presented by a serious scientist eager to make the mind-boggling concepts of his discipline understandable to interested lay people. It is an example of the Great Courses at their best.
Date published: 2018-07-17
Rated 5 out of 5 by from Fascinating, Excellent Presentation. Excellent course. Professor Carroll explains difficult concepts skillfully to make them easier to grasp. Great information and presentation about this aspect of cosmology.
Date published: 2018-06-29
Rated 5 out of 5 by from A punny title. I thoroughly enjoyed this course, and learned a great deal. Sean Carroll is an excellent, energetic instructor, easily my favorite among the courses I have. Very articulate, he explains his subject clearly. Highly recommended, despite being eleven years old.
Date published: 2018-06-17
Rated 3 out of 5 by from Old program refurbished This is an expanded version of a 12-lecture series I already owned. But this new series, in 24 parts, is still ignorant of the discovery of the HIggs boson in 2012, so it's out of date.
Date published: 2018-04-19
Rated 5 out of 5 by from My Review for Dark Matter, Dark Energy Excellent; Sean Carroll is a great teacher. Material could not be more interesting!
Date published: 2018-04-08
Rated 5 out of 5 by from Amazing lectures on strange cosmic finding! Indeed it was amazing presentation. Professor was excellent explaining difficult matter (to me) with plain language. It was presented well and very understandable. It shows science is developing everyday. So, I would like to know after this lecture on year 2006 and now (year 2018) what new development comes up. Expecting next lecture series on this theme.
Date published: 2018-04-03
Rated 3 out of 5 by from Complicated This course is for someone with a more advanced knowledge of physics. I didn't understand most of the lectures. Definitely not for the layman. The lecturer was, however quite good.
Date published: 2018-04-01
Rated 5 out of 5 by from Great Course I bought this course a while ago, and finally had the time to watch it. Great presentation. Bought the Higgs Boson course based on how well he presented this one.
Date published: 2018-03-20
Rated 5 out of 5 by from Clear explanations I have been enjoying this set of lectures. Very understandable and filling in gaps in my knowledge. Would be great to get an updated version of it since this was from 2007 I believe.
Date published: 2018-03-03
Rated 5 out of 5 by from To the Limit This is actually my second time buying this course- (gave my first, well used, audio copy as a gift to help inspire.) He's just the best guide I've ever seen. Perfect also for the non-scientist as he's a good at gradually building up to the complex. Recently listened to his work on "Time and Entropy". (He's also a bit playful.?)
Date published: 2018-03-02
Rated 5 out of 5 by from The title says it all "Dark Matter, Dark Energy. I purchased this course to accompany me on an international travel flight (18 hrs). I was able to give it my undivided attention.
Date published: 2018-02-24
Rated 5 out of 5 by from Top Notch! Great course but a little dated. I would pay to see a short update course. As usual for all his courses, Dr. Sean Carroll does a superb job explaining very complex topics.
Date published: 2018-02-12
Rated 4 out of 5 by from A Good Follow-Up Course This is the third lecture series I've watched by Professor Sean Carroll. All three are well-done, but all three are somewhat specialized in the topic they discuss. If you are looking for a better understanding of modern astrophysics and you don't have much background in the field, I would suggest two other courses before viewing this one: for the big picture, Cosmology: The History and Nature of Our Universe, by Mark Whittle, really an excellent lecturer. For the very small picture: Particle Physics for the Non Physicist by Steven Pollock. Both of these are wonderful and comprehensive. If you then still want to hear more about the "cutting edge" of physics--the questions of "dark matter" and "dark energy", the theories which try to explain them and the experimental quests to find some evidence, then watch this course. It will be a lot more understandable if you have the background of those 2 more general courses. Furthermore both dark matter and dark energy are still being very actively researched and not very well understood, so you won't be getting a lot in the way of "answers" here--just learning the ideas that physicists have been looking at, to find the way forward to an even bigger picture. All that being said, I found it fully absorbing and well worth watching, and you do not have to be able to work with higher mathematics to understand the material.
Date published: 2018-01-26
Rated 5 out of 5 by from Hard Subject - Great Lecturer Pretty tough material but Dr. Carroll did a great job. As new material was presented he would provide enough of a review so you would know how the new material fit in. I particularly liked that when he was arm waving, and in a subject like dark matter/energy there is a lot of arm waving, he always told us he was arm waving. Nice sense of humor too.
Date published: 2018-01-08
Rated 5 out of 5 by from Clarity and coverage of subject Dr. Carroll has a brilliant ability to explain a complex subject in a lucid and complete manner that a lay person can understand. He focuses on the main points with adequate examples and gives historical background to better understand these points. I have older lectures of his on sub atomic particles and physics and wanted to be updated on current information and data. I haven't finished this lecture, but so far I have not been disappointed. His lectures are illustrated well and are authoritative.
Date published: 2017-11-23
Rated 5 out of 5 by from Dark, but Clear As Professor Carroll states many times before revealing some discovery or insight: “As this is not a mystery, I’ll tell you now…”. Of course most of the subject matter in this course is unknown, but in that context, he presents extremely complex and even to cosmologists, mystifying ideas in a way that can be grasped by laypersons. As with many other reviewers, I am in awe in his ability to present these baffling issues in a manner that is both understandable and not condescending. Without using math (other than perhaps explaining the odd equation), but with the understanding that the viewer has some basic understanding of physics, including (very basic) quantum mechanics and relativity anyone can understand the reasons that dark matter has become an accepted concept in today’s understanding of the universe. Here the graphics are a big help. As an example the lecture on the cosmic microwave background included the classic picture of the temperature variations of the universe some 380,000 after the Big Bang, an understandable explanation of what it means and how the cosmic microwave background was predicted and discovered, and then using that same picture several times later in the course in order to illustrate further points. As another example, of how Dr. Carroll uses teaching techniques and illustrations, he introduces particles in lecture seven on atoms, the Standard Model in the very next lecture, showing us a table with all of the particles (including the yet to be discovered “Higgs Boson”) in an easily grasped manner and continues to use the table and the knowledge we had been given to effect later in the course. With Professor Carroll’s help the case for dark energy (where I had a bit of knowledge) became crystal clear and the case for dark energy (where I really had none) became understandable. Some reviewers have not liked Professor Carroll’s lecture or speaking style. To be sure he is not animated in the fashion of Professor Wolfson’s lectures on physics, but rather measured and quiet (although some have felt he goes a bit too fast), often passing off a joke in the understated manner where we are left with the humor a few beats later. I really can’t say enough about this course. Making complex material seem easy is a gift to be treasured. Of course Dr. Carroll has the academic chops to understand and advance these concepts, but so do many others. The ability to impart a bit of that knowledge to the rest of us, is one not given to many.
Date published: 2017-11-07
Rated 4 out of 5 by from Intriging Just started these lectures and it is hard to stop watching. The material is well presented but a little over my head. I just finished "Superstring Theory:" so that helped understand some of the concepts.
Date published: 2017-09-10
Rated 5 out of 5 by from We are in the dark ages. Even though the course is slightly dated, lacking current information, the material presented is very thorough and still valid. Mr. Carroll is meticulous about details and very careful about distinguishing between fact and speculation. I would like to see the course redone with better and more graphics. The standard to meet for graphics, in my opinion, is the course called The Theory of Everything. Mr. Carroll is a great presenter, clear, articulate, methodical. Highly recommended.
Date published: 2017-07-05
Rated 5 out of 5 by from dark matter Wow. great overview of concepts and tie in to dark matter and energy. Dr Carrol is a master presenter. Very engaging lectures. Thanks Dr Carrol.
Date published: 2017-07-04
Rated 3 out of 5 by from Great stat but outdated The first half of the course was quite interesting and educating but as it progressed you start figuring out that it is an old old course, about 10 years old , and that many things that course mentions as future events have already taken place such as the Higgs boson and the gravitational wave, in addition it becomes redundant with repetitions of many f the same things that hve already been mentioned
Date published: 2017-06-30
Rated 5 out of 5 by from Knowledgeable information on the subject title. Dr. Carroll has a rare level of conceptual understanding of physics and presents his material well.
Date published: 2017-06-30
Rated 5 out of 5 by from Good if you are a cosmologist I recently watched this series of lectures and although the professor is very knowledgeable of his subject, I found myself lost in the equations and conclusions. I do believe dark matter and dark energy exist, and the professor proves this very well. This course is a good review of particle physics If you have been away from your college physics courses for a while. I did add to my previous knowledge. However, I am not a cosmologist so some things did not interest me.
Date published: 2017-05-25
Rated 4 out of 5 by from Dark Matter, Dark Energy: the Dark Side of the Uni This series of lectures are, at times, quite advanced for the average student. I have had some college level physics and could follow along pretty well but got lost at times. The lecturer knows the subject very well, and presents it in a rather dry manner. I would have given this series 5 stars except that some of the covered material is out of date. It appears that the lectures are circa 2007 and a lot has happened that he could only mention as occurring at some future date. ie. the isolation of the Higgs Boson particle and the recording of gravity waves. I intend to watch his lectures on the Higgs Boson soon.
Date published: 2017-05-15
Rated 5 out of 5 by from High Density, high quality and compelling The precision of both thought and language are brought to the subject. It is clear that Carroll has given great thought to trying to truly educate by providing both context, background and reasoning which results in a big bonus in reviewing the progress in the last few decades in particle physics and correctly anticipates developments in that area that have occurred since these lectures were recorded. Using the Friedmann equation as a central touchstone throughout was darn clever. Put it this way....I'm buying more of his courses.
Date published: 2017-05-07
Rated 5 out of 5 by from A remarkable course Based on the title I expected this course to be relatively narrow in scope. Instead, it turned out to be a rather amazing compilation of topics (Relativity, particle physics, the Big Bang, inflation, multi-verse, string theory, black holes, etc. etc.) Carroll has a nice presentation style and frequently digresses into "questions you might be asking" and "differing viewpoints among physicists" that other lecturers leave dangling and unanswered. This course left me with a much clearer picture of "everything," though to be fair these subjects (particularly particle physics and string theory) defy intuitive understanding. I plan to watch these lectures again.
Date published: 2017-04-27
Rated 5 out of 5 by from Brilliant introduction to a complex subject! I found this course an invaluable introduction to a complex and difficult subject. One could easily spend a lifetime pursuing the associated mathematics of this subject and not attain a fraction of the physical insight that Sean Carroll brings to his lectures.
Date published: 2017-04-24
Rated 5 out of 5 by from Great Detective Story This is an older course in the catalog without quite the level of graphic effects of the later course on the Higgs field. However, as a scientist with a good deal of quantum mechanics training, but zero training in cosmology, I found this course captivating. It's my favorite type of popular science: it pulls no punches, there are equations! But, this course is not a dull lecture with loads of math (the loads of math would be OK, as long as it isn't dull). This set of talks is like a good detective story which is hard to put down. Dark matter and dark energy seem so incredibly "made up". Historically this sort of thing has pointed more to a problem with our understanding than something that is real. I am reminded of the "Ether" and the "Caloric Theory of Heat". Both involved invisible substances detectable only indirectly. However, in this mystery, there is a big problem: if our understanding of gravity is wrong (it might be), then there are some pretty deep consequences. If it's basically correct then there are some equally deep consequences. The instructor walks through asking, "well, maybe our observations could mean this...", ahhh, but no. He systematically, eliminates all the various 'easy' answers and leaves you waiting for the new theoretical and observational results. This is the way science should be taught. It doesn't really matter how it turns out, either way something new must be involved and it will be amazing to see how it all turns out. If you finish this course you will be able to understand what the results of new experiments are telling us, and more importantly, be able to wade through all the pseudo-science that surrounds anything with such catchy names as dark matter and dark energy.
Date published: 2017-03-18
Rated 5 out of 5 by from Intellectually stimulating! Outstanding presenter, course organized well with great content. I am learning a lot of very interesting facts.
Date published: 2017-03-05
  • y_2019, m_11, d_15, h_16
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.2
  • cp_2, bvpage2n
  • co_hasreviews, tv_10, tr_135
  • loc_en_US, sid_1272, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.0
  • CLOUD, getContent, 83.94ms
  • REVIEWS, PRODUCT

Questions & Answers

Customers Who Bought This Course Also Bought