This experience is optimized for Internet Explorer version 9 and above.

Please upgrade your browser

Send the Gift of Lifelong Learning!

Joy of Science

Joy of Science

Professor Robert M. Hazen, Ph.D.
George Mason University

Gifting Information


To send your gift, please complete the form below. An email will be sent immediately to notify the recipient of your gift and provide them with instructions to redeem it.

  • 500 characters remaining.

Frequently Asked Questions

With an eGift, you can instantly send a Great Course to a friend or loved one via email. It's simple:
1. Find the course you would like to eGift.
2. Under "Choose a Format", click on Video Download or Audio Download.
3. Click 'Send e-Gift'
4. Fill out the details on the next page. You will need to the email address of your friend or family member.
5. Proceed with the checkout process as usual.
Q: Why do I need to specify the email of the recipient?
A: We will send that person an email to notify them of your gift. If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: How will my friend or family member know they have a gift?
A: They will receive an email from The Great Courses notifying them of your eGift. The email will direct them to If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: What if my friend or family member does not receive the email?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at ( or call 1-800-832-2412 for assistance.
Q: How will I know they have received my eGift?
A: When the recipient clicks on their email and redeems their eGift, you will automatically receive an email notification.
Q: What if I do not receive the notification that the eGift has been redeemed?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at ( or call customer service at 1-800-832-2412 for assistance.
Q: I don't want to send downloads. How do I gift DVDs or CDs?
A: eGifting only covers digital products. To purchase a DVD or CD version of a course and mail it to a friend, please call customer service at 1-800-832-2412 for assistance.
Q: Oops! The recipient already owns the course I gifted. What now?
A: Great minds think alike! We can exchange the eGifted course for another course of equal value. Please call customer service at 1-800-832-2412 for assistance.
Q: Can I update or change my email address?
A: Yes, you can. Go to My Account to change your email address.
Q: Can I select a date in the future to send my eGift?
A: Sorry, this feature is not available yet. We are working on adding it in the future.
Q: What if the email associated with eGift is not for my regular Great Course account?
A: Please please email customer service at ( or call our customer service team at 1-800-832-2412 for assistance. They have the ability to update the email address so you can put in your correct account.
Q: When purchasing a gift for someone, why do I have to create an account?
A: This is done for two reasons. One is so you can track the purchase of the order in your ‘order history’ section as well as being able to let our customer service team track your purchase and the person who received it if the need arises.
Q: Can I return or Exchange a gift after I purchase it?
A: Because the gift is sent immediately, it cannot be returned or exchanged by the person giving the gift. The recipient can exchange the gift for another course of equal or lesser value, or pay the difference on a more expensive item

Priority Code


Joy of Science

Course No. 1100
Professor Robert M. Hazen, Ph.D.
George Mason University
Share This Course
4.6 out of 5
84 Reviews
76% of reviewers would recommend this series
Course No. 1100
Streaming Included Free

Course Overview

English novelist and scientist C. P. Snow classed certain scientific ideas with the works of Shakespeare as something every educated person should know. One such idea, according to Snow, was the second law of thermodynamics, which deals with the diffusion of heat and has many profound consequences. He might well have added Newton's laws, the periodic table of elements, the double-helix structure of DNA, and scores of other masterpieces of scientific discovery.

Now, Professor Robert M. Hazen introduces these and other great ideas in 60 lectures that explore the fundamental discoveries and principles of all of the physical and biological sciences—physics, genetics, biology, astronomy, chemistry, meteorology, thermodynamics, and more.

A Passion for Teaching and Science

Professor Hazen is an apostle of science education for non-scientists, and he has few peers at rendering the most complex ideas simple, without being simplistic.

"I have a passion as a teacher," he says, "and that passion is to share with you the joy of science, the astonishing discoveries, the mind-bending insights, and the transforming applications of science as well."

A research scientist, professor, and advisor to public television's NOVA science series, Dr. Hazen helped draft the National Science Education Standards (National Academy of Sciences, 1997). These Standards represent a consensus among thousands of scientists and educators regarding the most effective approaches for teaching and learning about science.

These lectures have been specifically designed to introduce and review all of the scientific principles that are included in the Content Standards portion of the National Science Education Standards.

The result is a comprehensive and integrated introduction to all of science. By devoting just 30 minutes a day, you can complete this entire course in two months and discover an enhanced understanding of the physical world that will be a source of endless wonder and intellectual joy.

A Special Learning Opportunity

This course offers a special learning opportunity because:

  • It steers clear of the jargon and mathematical abstractions that so often bedevil science education.
  • It features an integrated approach that allows you as a learner to transcend artificial disciplinary boundaries in order to gain a panoramic view of the whole scientific enterprise in all its breathtaking scope.

The key to these achievements is Professor Hazen's insight that only a course organized around the common principles of scientific inquiry can put science in its proper light as a unique way of knowing.

Four Reasons to Become Scientifically Literate

Dr. Hazen cites four reasons why you should strive to become scientifically literate:

  • Scientific literacy helps you as a consumer make informed decisions—about health care, diet, nutrition, exercise, environmental issues, and the plethora of technological choices that we all face.
  • Many of today's jobs depend directly or indirectly on science as well as on technologies that are developed from scientific discoveries.
  • Scientific literacy helps you provide your children with a firm foundation as they study science in school.
  • Learning about science allows you to share the joy of humanity's greatest ongoing adventure of discovery and exploration.

What You'll Learn

Part I Highlights (Lectures 1–12):

Dr. Hazen begins by explaining the four-step cycle that defines the "scientific method" of knowing. He introduces you to five pivotal figures in early-modern science: Nicolas Copernicus, Tycho Brahe, Johannes Kepler, Galileo Galilei, and Isaac Newton. Astoundingly, during a single rural sojourn in 1665–66, Newton discovered calculus, many of the basic laws of optics, the three laws of motion, and the law of gravity. Newton's discoveries unified the supposedly separate domains of terrestrial and celestial motions.

Part II Highlights (Lectures 13–24):

Dr. Hazen introduces you to H. C. Oersted, the little-known figure who paved the way for a revolution in technology with his finding that electricity can produce a magnetic field. Out of this discovery came the electromagnet, the telegraph, the telephone, the electric motor, the generator, and many other inventions. You will also learn how James Clerk Maxwell offered the first mathematically rigorous description of the close connection between electricity and magnetism—and how Einstein, pondering a paradox that arose from Maxwell's equations, proposed and explored the principle of relativity.

Dr. Hazen shifts the focus of his lectures to the nature of matter, paying particular attention to atoms and quantum mechanics. He explains the chemical bonding of atoms, the different states of matter, and the principal force of change in the world of matter: chemical reactions.

Part III Highlights (Lectures 25–36):

Dr. Hazen then turns to the explanation of how specific physical systems work. Such systems manifest themselves in the properties of materials, as well as in the characteristics of atomic isotopes and their energy-producing nuclear reactions. You will learn about astronomy, the Big Bang theory, the solar system, and today's burgeoning field of extra-solar planetary systems.

Part IV Highlights (Lectures 37–48):

Dr. Hazen devotes lectures to the constant recycling of Earth's materials—water, air, and rock. He explores the question, "What is life?" You'll examine life's molecular building blocks: carbohydrates, lipids, proteins, and nucleic acids. You'll learn how biological information is passed from parents to offspring, processes first quantified by the Czechoslovakian monk Gregor Mendel.

Part V Highlights (Lectures 49–60):

Mendel's discoveries lead Dr. Hazen to focus on the great unifying biological principles of genetics, evolution, and ecosystems. He argues that no scientific discovery of the 20th century has had a greater impact than the deciphering of the genetic code, embedded in the double-helix structure of DNA first described in 1952 by James Watson and Francis Crick. Dr. Hazen goes on to address troubling ethical questions raised by genetic engineering. He examines both the chemical and biological evolution of life before delving into the interdependent communities of species and their physical environments known as ecosystems.

Dr. Hazen also raises questions about claims that science is approaching its end—that all there is of significance to be learned about the natural world will soon be known.

Hide Full Description
60 lectures
 |  30 minutes each
  • 1
    The Nature of Science
    What distinguishes science from the many other ways humanity has devised to understand the cosmos? What makes knowledge "scientific"? Why is scientific literacy so important for citizens in the modern world? x
  • 2
    The Scientific Method
    Science is a search for answers, and thus needs well-conceived questions. How are these questions formed? At what do they aim? What is "the scientific method"? Is science purely systematic, or do accident and serendipity play a role? x
  • 3
    The Ordered Universe
    Scientists believe that our senses don't lie. Although this was not obvious to the ancients, the Roman scholar Pliny the Elder catalogued thousands of "facts." Ptolemy's famous geocentric model of the solar system was an early application of the scientific method. x
  • 4
    Celestial and Terrestrial Mechanics
    Pivotal figures in early-modern science, Nicolas Copernicus, Tycho Brahe, and Johannes Kepler, made significant contributions to astronomy. Galileo Galilei, the great Italian physicist and astronomer, was also a pioneer of experimental methods. x
  • 5
    Newton's Laws of Motion
    Isaac Newton built on the works of Kepler and Galileo by showing that motion everywhere obeys a single set of mathematical laws. During a rural sojourn in 1665–66, he formed many of his major contributions, including calculus, some basic laws of optics, the three laws of motion, and the law of gravity. x
  • 6
    Universal Gravitation
    Did a falling apple really inspire Newton to deduce the mathematical description of the universal force known as gravity? What do Newton's universal laws of motion and gravity reveal about the world? What are their implications for the study of natural phenomena? x
  • 7
    The Nature of Energy
    Energy is the ability to do work—i.e., to exert a force over a distance. What are the various forms in which energy comes? How have scientists defined and studied them? x
  • 8
    The First Law of Thermodynamics
    Energy constantly changes forms all around us. Study of such transformations has led to countless useful devices. Learn why, to many scientists, the first law of thermodynamics tells us something profound about the symmetry of nature. x
  • 9
    The Second Law of Thermodynamics
    What does the second law of thermodynamics mean? What is the difference between heat and temperature? How does heat flow? What does the second law imply about the limits on an engine's ability to convert heat energy into useful work? x
  • 10
    In its most general form, the second law of thermodynamics states that the degree of disorder, or entropy, of any system tends to increase over time. Among the deep and far-reaching questions raised by this concept is the origin of highly ordered local systems, such as life. x
  • 11
    Magnetism and Static Electricity
    Magnetism is one of the forces that can be studied in light of Newton's laws of motion. Because compasses are magnetic, magnetism was of great importance in the age of ocean exploration and commerce. Static electricity, by contrast, was little more than a fascinating curiosity. x
  • 12
    Most modern uses of electricity rely on electrons that move. Why was Alessandro Volta's battery a turning point in electrical science? What are the components of an electrical circuit? x
  • 13
    H. C. Oersted found that electricity can produce magnetic fields, leading to the electromagnet, the telegraph, and the electric motor. Michael Faraday showed that moving magnets induce electricity—the principle behind most electric-power generation. James Clerk Maxwell described the links between electricity and magnetism in four elegant equations. x
  • 14
    The Electromagnetic Spectrum, Part I
    Maxwell's equations predicted the existence of electromagnetic waves. He predicted that invisible wavelengths would be found; Hertz discovered radio waves in 1889. How do scientists divide the electromagnetic spectrum? x
  • 15
    The Electromagnetic Spectrum, Part II
    The discovery and application of electromagnetic radiation has transformed science and technology in ways that you'll find familiar, but also in ways that may surprise you. x
  • 16
    Pondering a paradox that arose from Maxwell's equations, Albert Einstein stated and explored the principle of relativity, both special and general. Fatefully, Einstein also discovered that mass must be a form of energy. x
  • 17
    While the concept of the atom, the basic building block of all matter, was first proposed at least 2,500 years ago, its existence was not verified until the 20th century. John Dalton presented the first modern statement of the atomic theory. Learn how the discovery of radioactivity and a mathematical demonstration by Einstein provided the compelling evidence. x
  • 18
    The Bohr Atom
    Learn why Rutherford's concept of the atom was physically impossible, and what Niels Bohr proposed as an alternative. Bohr's model helped to explain many of the properties of light-matter interactions. Lasers make special use of the "quantum" interactions between light and matter. x
  • 19
    The Quantum World
    In 1900, Max Planck theorized that energy comes in discrete bundles called "quanta." Einstein's research later reinforced this idea. At the atomic scale, according to Werner Heisenberg's famous uncertainty principle, every measurement changes its object. Thus quantum-scale events can only be described in terms of probabilities, and electrons display the characteristics of both particles and waves. x
  • 20
    The Periodic Table of the Elements
    Long before Bohr, chemists realized that there are many kinds of atoms—the chemical elements. Elements cannot be broken down into other substances by any ordinary physical or chemical means. In 1869, Dmitri Mendeleev used observed similarities to draw up a periodic table of 63 chemical elements. Subsequent discoveries have lengthened the table but not altered its basic form. x
  • 21
    Introduction to Chemistry
    Learn why atoms bond to one another, and what makes some types of atoms particularly unstable and reactive. Learn what distinguishes covalent from ionic and metallic bonding. The most versatile of all covalently bonded elements is carbon, the element of life. x
  • 22
    The Chemistry of Carbon
    Carbon's unparalleled ability to form covalent bonds makes it the major focus of modern chemical research. More than 90 percent of known compounds are organic; that is, they contain carbon. Polymers, the chemical building blocks of plastics, form an important class of organic molecules. x
  • 23
    States of Matter and Changes of State
    The states of matter—solid, liquid, gas, and plasma—manifest the submicroscopic organization of atoms and molecules. How do scientists define these four states? x
  • 24
    Phase Transformations and Chemical Reactions
    Change is a hallmark of the material world. Wood burns, glue hardens, eggs cook, dead organisms decay, carbon graphite under high pressure becomes a diamond. Physical transformations reflect changes in the arrangement of atoms and their chemical bonds. What distinguishes a phase transformation from a chemical reaction? What are types of chemical reactions, and how do they occur? x
  • 25
    Properties of Materials
    Materials are useful because of distinct physical properties, including strength, hardness, and a variety of optical, thermal, magnetic, and electrical properties. These properties result from the kinds of atoms and their arrangements in three dimensions, and the way they are bonded. x
  • 26
    Semiconductors and Modern Microelectronics
    If conductors and insulators were the only materials we had, the world of electronics would be quite limited. Computers and other marvels of modern electronics rely on the microchip, or integrated circuit, which is a single semiconductor device. Learn what semiconductors are, and how they work. x
  • 27
    Isotopes and Radioactivity
    The discovery of radioactivity, and the subsequent exploration of the atomic nucleus, led to nuclear physics and nuclear chemistry. About one atom in a million is radioactive. Such atoms can decay through alpha, beta, or gamma radiation, all of which are dangerous because they can disrupt chemical bonds. x
  • 28
    Nuclear Fission and Fusion Reactions
    Prodigious amounts of energy can be released when atoms are split (fission) or when two nuclei, usually hydrogen, are forced together (fusion). Fission reactions can be controlled in reactors or unleashed by bombs. Attempts are now underway to control fusion reactions, which would provide sustained energy. x
  • 29
    Nearly all the information that we have about distant stars comes from electromagnetic radiation traveling at 186,000 miles per second. Astronomers collect, analyze, and interpret this data to understand the spatial distribution, dynamic state, and past and future of the universe. x
  • 30
    The Life Cycle of Stars
    Our Sun is an ordinary or "main sequence" star, 4.5 billion years old. It has several billion more years of hydrogen-burning life left, during which the contractive force of gravity will strive against the expansive force of nuclear fusion. How do stars like the Sun die, and what is left behind? x
  • 31
    Edwin Hubble and the Discovery of Galaxies
    In 1924, Edwin Hubble discovered that galaxies are immense collections of gravitationally bound stars. Astronomers have since catalogued thousands of galaxies. Hubble also found a close relationship between a galaxy's distance and its "red shift," a change in light wavelengths caused by rapid movement away from us. As telescopes have improved, the estimated number of galaxies has grown to tens of billions. x
  • 32
    The Big Bang
    The Big Bang theory proposes that the universe came into existence at one moment in time and has expanded rapidly. The Big Bang was not an explosion but an expansion—of space itself, with all its matter and energy. What observations support this theory? What surprising conclusions do astronomers draw from galactic red shifts? x
  • 33
    The Ultimate Structure of Matter
    The search for a "theory of everything," a set of equations that describes all matter and forces in the universe, is one of the great frontiers in physics today. What will determine whether or not we make progress in this search? What are the four fundamental forces and particles in the universe, and why do some scientists think that, at some level, they are all the same? x
  • 34
    The Nebular Hypothesis
    According to Pierre Simon Laplace's widely accepted nebular hypothesis, a star forms when gravity draws interstellar dust and hydrogen gas into an increasingly dense, small cloud that flattens into a rotating disc with most of its mass pulled to the center. If solar systems form from such discs, then there must be many in our own galaxy. The Hubble Space Telescope has produced dramatic images of star-forming regions in nearby space. x
  • 35
    The Solar System
    In this lecture we journey through the solar system. We voyage from Mercury, alternately seared by the Sun and frozen in darkness, to Jupiter, whose four largest moons are distinct planetlike worlds of their own, and then beyond Uranus to the beautiful blue planet Neptune. x
  • 36
    The Earth as a Planet
    We complete our review of the solar system and look at the fascinating research field of extrasolar planetary systems. More than a dozen planets the size of Jupiter or larger have been detected, and more are being found every month. The Earth shares many characteristics with other planets of the solar system but is unique because it has so much liquid water—the essential medium for life. x
  • 37
    The Dynamic Earth
    The Earth's topography seems permanent, but a close look reveals signs of constant change. What first led James Hutton to propose the key geological doctrine of uniformitarianism, which holds that great changes occur incrementally over eons? x
  • 38
    The Plate Tectonics Revolution
    The plate tectonics theory produced one of the great scientific revolutions of the 20th century. Before the mid-1960s, Earth studies were localized and fragmented into subdisciplines. We examine the separate lines of observational evidence that led to this grand theory, and the wealth of specific and testable predictions that flow from it. x
  • 39
    Earthquakes, Volcanoes, and Plate Motions Today
    The mechanism of plate tectonics depends on the rigidity of rocks. The lithosphere, which includes the crust and the upper mantle, floats on the relatively soft, hot asthenosphere. The Earth's surface is divided into about a dozen lithospheric plates, with earthquakes and volcanoes clustered at their boundaries. How do geologists explain the presence of volcanism in mid-plate "hot spots"? x
  • 40
    Earth Cycles—Water
    All elements and compounds take part in geochemical cycles, which are described by identifying all the principal reservoirs, as well as the processes by which materials move from one reservoir to another. Three major Earth cycles are the water cycle, the atmospheric cycle, and the rock cycle. x
  • 41
    The Atmospheric Cycle
    Our atmosphere is an envelope of gases. Weather is the state of the atmosphere at a given time and place; climate is a long-term average of weather for a given region. What variables define the state of the atmosphere? What does paleoclimatology tell us about climate change? x
  • 42
    The Rock Cycle
    The rock cycle is epic both in terms of time and scale. What are the three major types of rock recognized by geologists? How does each form? Learn some of the amazing stories that rocks tell. x
  • 43
    What Is Life?
    Biology is the study of living systems. What characteristics do all living organisms share? What share of the estimated 50 million species has been identified? How does the Linnaean system for classifying species work? x
  • 44
    Strategies of Life
    Metabolism is the cell's process of obtaining energy from its surroundings and converting that energy into molecules. Kingdoms of organisms adopt different strategies for supporting metabolic activity—in other words, for staying alive. x
  • 45
    Life's Molecular Building Blocks
    All living organisms are exceptionally complex chemical systems, yet these systems are built from relatively simple parts. Life's varied chemical substances are constructed from a few molecular building blocks, which share a few essential characteristics. x
  • 46
    What are proteins? What do they do that makes them the chemical workhorses of life? What are amino acids, and what do they have to do with proteins? x
  • 47
    Cells—The Chemical Factories of Life
    All living things are composed of cells, the fundamental unit of life. All cells arise from previous cells. How can cells be compared to chemical factories? x
  • 48
    Gregor Mendel, Founder of Genetics
    Classical genetics, founded in the 19th century by Gregor Mendel, is the study of how biological information is passed from parents to offspring at the level of organisms and their traits. Mendel's work was ignored and unappreciated during his lifetime, but it formed a basis for genetic discoveries in the 20th century. x
  • 49
    The Discovery of DNA
    Mendel's laws of genetics were purely descriptive. Cellular genetics, the study of the transfer of biological information at the level of cells, set the stage for research in molecular mechanisms of genetics. The double-helix structure of DNA was first described in 1952 by James Watson and Francis Crick. x
  • 50
    The Genetic Code
    No scientific discovery of the 20th century has had a greater impact than the deciphering of the genetic code. The Human Genome Project will map for the genes on each of the 23 pairs of human chromosomes, and determine the sequence of all three billion letters of the human genetic message. x
  • 51
    Reading the Genetic Code
    Our growing understanding of genes raises troubling ethical questions. While each person's interests, abilities, and behavior arise from a complex interplay of environment and genetic attributes, a number of genetic diseases reveal that genes play an important role as well. What would it take to establish definitive links between heredity and personal traits? x
  • 52
    Genetic Engineering
    Humans, never content simply to observe nature, have begun to read and edit the genetic code. The questions that swirl around genetic engineering exemplify the opportunities and concerns associated with these new abilities. x
  • 53
    Cancer and Other Genetic Diseases
    Genetic research in humans is driven primarily by efforts to cure inherited diseases. Yet as we learn more about "editing" genes, we may learn to design entirely new organisms. Then the central question of genetics will not be "What is the language of life?" but rather "What limits must we place on using the language of life?" x
  • 54
    The Chemical Evolution of Life
    If all cells come from other cells, where did the first cell come from? What can science tell us here, and what are the competing scientific hypotheses? x
  • 55
    Biological Evolution—A Unifying Theme of Biology
    Biological evolution is the central unifying theme in the life sciences. What is the evidence that guides us in understanding life's history on our planet? What is molecular phylogeny now revealing about this history? x
  • 56
    The Fact of Evolution—The Fossil Record
    Evolution is an observational fact, though there are competing theories about how it occurs. The primary source of evidence for the evolution of life comes from the fossil record. x
  • 57
    Charles Darwin and the Theory of Natural Selection
    When Charles Darwin first formed his theory of natural selection, he was troubled by the lack of a known physical mechanism for change. What do we know today that fills that gap? x
  • 58
    Ecosystems and the Law of Unintended Consequences
    Species always occur as part of an ecosystem—an interdependent community of species and its physical environment. The law of unintended consequences states that any change in one part of a complex system may affect other parts of the system, often in unpredictable ways. How can we improve our understanding of our impact on ecosystems? x
  • 59
    The Ozone Hole, Acid Rain, and the Greenhouse Effect
    Modern technology and population growth have led to many concerns about their effects on the environment and global climate. Local problems are fairly straightforward, but as problems become less localized, both diagnoses and solutions grow more elusive. This lecture reviews three such problems: the ozone hole, acid rain, and the greenhouse effect. x
  • 60
    Science, the Endless Frontier
    Recently a number of science watchers have claimed that science is approaching its end—that all there is of significance to be learned about the natural world will soon be known. Are they right? x

Lecture Titles

Clone Content from Your Professor tab

What's Included

What Does Each Format Include?

Video DVD
Video Download Includes:
  • Ability to download 60 video lectures from your digital library
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps
Video DVD
Audio Download Includes:
  • Ability to download 60 audio lectures from your digital library
  • Downloadable PDF of the course guidebook
  • FREE audio streaming of the course from our website and mobile apps
Video DVD
DVD Includes:
  • 60 lectures on 10 DVDs
  • 312-page printed course guidebook
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps
Video DVD
CD Includes:
  • 60 lectures on 30 CDs
  • 312-page printed course guidebook
  • Downloadable PDF of the course guidebook
  • FREE audio streaming of the course from our website and mobile apps

What Does The Course Guidebook Include?

Video DVD
Course Guidebook Details:
  • 312-page printed course guidebook
  • Photos & illustrations
  • Charts & diagrams
  • Suggested readings

Enjoy This Course On-the-Go with Our Mobile Apps!*

  • App store App store iPhone + iPad
  • Google Play Google Play Android Devices
  • Kindle Fire Kindle Fire Kindle Fire Tablet + Firephone
*Courses can be streamed from anywhere you have an internet connection. Standard carrier data rates may apply in areas that do not have wifi connections pursuant to your carrier contract.

Your professor

Robert M. Hazen

About Your Professor

Robert M. Hazen, Ph.D.
George Mason University
Dr. Robert M. Hazen is Clarence J. Robinson Professor of Earth Sciences at George Mason University in Fairfax, VA, and a research scientist at the Geophysical Laboratory of the Carnegie Institution of Washington. Professor Hazen earned his bachelor’s and master’s degrees in geology from the Massachusetts Institute of Technology. He earned a Ph.D. in Earth Science from Harvard University and did post-doctoral work at...
Learn More About This Professor
Also By This Professor


Joy of Science is rated 4.6 out of 5 by 84.
Rated 5 out of 5 by from Outstanding This is an outstanding course of a wide range of topics: physics, astronomy, chemistry, biology, geology, genetics. Robert Hazen provides clear examples and his great enthusiasm for makes the subject matter all the more interesting. I didn't even think I was interested in geology until I heard his lectures, but now I've just ordered a geology course.
Date published: 2017-05-04
Rated 5 out of 5 by from Great course Very nice excursion through science. The content and progression through all branches of science are well done. And the delivery is excellent. My only negative, and it's really a regret, is that the course is almost 20 years old. A Joy of Science II just covering updates since the first course would be great!
Date published: 2017-04-27
Rated 5 out of 5 by from One of my favorite courses. This is one of the first courses I purchased 10 years ago, and since it is also one of my favorites, I decided it deserves its due review, even though there is little I can say that has not already been said. This is an excellent introductory course on general science. I covers all the relevant and necessary topics from the history and beginnings of science to current day understanding. I considered myself fairly well informed in general science before buying this course, but was pleasantly surprised at how much of the basic concepts I did not know. Dr. Hazen is an excellent presenter, and never failed to convey a solemn respect and enthusiasm for the subject. Despite being more than 10 years old, the content of the course still holds up. It provides plenty of informative graphics and illustrations, and live demonstrations by Dr. Hazen. I particularly like the logical progression the course takes on the development and history of the various sciences that has brought us up to our present day understanding and technology. This course should be an indispensable addition to any household library, and particularly those with school children. I have watched it a couple of times over, and more in some parts, and feel due for a refresher soon. I also own Dr. Hazen's Origins of Life video course, which delves much deeper into the biological science that many reviewers here feel is absent from this course.
Date published: 2017-02-20
Rated 4 out of 5 by from My wife & I are enjoying the course very much, but we would recommend that the professor not use so many & repetitive hand gestures -- they become distracting.
Date published: 2016-01-29
Rated 5 out of 5 by from Riveting Science Survey DVD Review If you are a professional scientist then this is NOT the course for you. However, if you have been away from science for a time or have never been exposed to it in the first place, then this IS the course for you. Three biggest selling points: 1) Dr. Hazen explains very abstract ideas in simple terms, imparting an intuitive understanding of concepts into the student. Two examples of this -- but there are many more -- are his descriptions of Relativity and the Big Bang. It was as if I was learning about them for the first time. 2) Dr. Hazen unifies the scientific disciplines throughout the course, clearly showing the linkages between them. He simply shows how Newtonian physics ties to chemistry which ties to astronomy, cosmology, earth science, life science, etc. Building from the first selling point, I had always been able to parrot the line that the scientific disciplines were linked, but now I really comprehend HOW they are linked. 3) Dr. Hazen is an outstanding presenter. I breezed through this course as I could not wait to get back to the next class; watching them was the highlight of my day. Of note, this course is also a big hit with my son in middle school. As they cover various topics in his science class we watch the corresponding class from this course to provide him a much greater understanding than what is taught at school.
Date published: 2015-11-14
Rated 2 out of 5 by from Disappointing. The content is that of a general high school science course for non-scientists. It does include what any educated person should know, although it's extremely basic. Professor Hazen is an excellent teacher, but I found his Origins of Life and The Origin and Evolution of Earth much better. I decided to send the course back for a refund in part because it's so elementary but mainly because the professor felt compelled to apologize in lecture 4 for the fact that Copernicus, Brahe, Kepler and Galilei are "dead, white males", as though this was a gender-studies or some other -studies course. HIs comments were unnecessary and offensive. I have bought about 80 Great Courses and this is the first one that I have returned.
Date published: 2015-08-07
Rated 5 out of 5 by from Don't fear the scientist With limited and sporadic knowledge of science, I've tended to shy away from tackling this very deficient area in my education. With an interest in science fiction, technology and space, I figured I should at least try to understand science. So with trepidation I kicked up the first lecture. To my surprise Professor Hazen made science interesting and generally got me to understand the principles involved. Occasionally I did get lost, but he is good at reviewing and simplifying at the start of every lecture, so I could get back up to speed even if i missed a few specifics. Part of the reason I got into the course is my love of history. The early lectures covered the history of science nicely which made for any easier introduction to the subject. Even when he got into complex subjects like chemistry and genetics, I felt that I was following well enough to learn. The course is well organized with one subject leading into another. He sometimes used little experiments, computer models or samples which helped me visualize some principles I was having trouble with. Some samples like his vast collection of troglodytes were just fun. The only real negative for most is the age of the course. Science has moved on a bit since this was recorded so you aren't getting the latest information. For more conservative and home school folk the elephant in the room is evolution. The Professor is very straight forward in saying that he believes evolution is scientific fact and creationism is not. While I tend toward intelligent design (though not 6000 year old earth), I appreciated his well reasoned arguments. I felt that he was teaching and not just condescendingly calling anyone who might disagree an idiot. If you want you or your children to be exposed to evolution at a level that they will find in high school or a general science college class, this is a good course. Candidly i think not educating kids in this area is as irresponsible as not educating them in well biology... They are going to find out about both and better in a safe environment than the locker room or the laboratory.
Date published: 2015-07-31
Rated 5 out of 5 by from Great introduction to science I recommend this course for anyone looking to dip their toes in the wide and deep field of science and not knowing where to begin. This course certainly satisfies that need. Because of the course content’s incredible diversity, I don’t think all lectures will appeal to everyone, but they do not really need to. Instead, this course offers a rich selection of topics from which one can begin a more in-depth pursuit in subsequent studies. While I appreciate the enthusiasm of Prof. Hazen and his sincere desire to have us share his interests in science, I really thought the first lecture backfired in this effort, and as I listened I felt myself growing somewhat uneasy with the fundamental message. For example, early in the first lecture Hazen goes through a newspaper the great many science-related news items and stories. His point is to make us realize how pervasive science is in our daily lives. However, I couldn't help but take it as an indictment of how science can potentially ruin our lives. News articles about the war and militarism, environmental destruction and pollution, and the tools of crime made me wonder if we didn't need a little less science in our lives. I know this wasn't his intention. But also when Prof. Hazen lists the four main principles justifying the need for people to become more scientifically literate, he seems to pander to some of our worst qualities as humans. Is it really necessary to become more scientifically literate so that we can become better “consumers”? Is that really the first principle? I understand what he's saying, but I would think such a message doesn't need to be delivered to satisfy our base instincts in a consumer-oriented society. The subsequent content-oriented lectures are much better. Some are better than others, but this is the result of one’s interests rather than inconsistency in the delivery, as I mentioned above. I found the lectures on materials properties and composition and astronomy to be very appealing; others, like quarks, I found incomprehensible given my paucity of background knowledge. But this suggests a variation of depth of coverage where some topics are possibly too advanced to get hold of within 30 minutes. In this regard, Prof. Hazen’s efforts at some historical background and biographical discussion of various well known scientists add to the interest value of the course. The later lectures go into some extended coverage of some fascinating topics such as genetics, ecosystems and Darwin’s theory of evolution. I also found the ending of the series to be particularly strong, revealing the limitless opportunities for scientists and anyone else interested in learning more. This is a good course for those beginning their inquiry into science or those wanting to reacquaint themselves with past interests. What I valued in particular were some of the lectures that provided a very informative background to many of the issues that we encounter in the media today, almost always presented without the requisite back story. Here in this course we are able to become more informed about those stories. I listened to all these lectures in audio format. While this was convenient for me, there are undoubtedly some lectures where my learning would have benefited from the accompanying visual presentation offered in the video format, for example the discussion of some concepts related to physics or the analysis of the periodic table. The audio is not inadequate in this regard, but I am sure the video version is superior. However, 60 lectures constitute a significant body of learning and taking each 30-minute lecture while walking helps ensure the health of both body and mind, so I still recommend the audio version.
Date published: 2015-04-23
  • y_2017, m_10, d_20, h_24
  • bvseo_bulk, prod_bvrr, vn_bulk_2.0.3
  • cp_1, bvpage1
  • co_hasreviews, tv_6, tr_78
  • loc_en_US, sid_1100, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.0
  • CLOUD, getContent, 4.98ms

Questions & Answers


1-10 of 11 Questions
1-10 of Questions

Customers Who Bought This Course Also Bought

Buy together as a Set
Save Up To $21.00
Choose a Set Format
Video title