This experience is optimized for Internet Explorer version 9 and above.

Please upgrade your browser

Send the Gift of Lifelong Learning!

Mathematics, Philosophy, and the "Real World"

Mathematics, Philosophy, and the "Real World"

Gifting Information


To send your gift, please complete the form below. An email will be sent immediately to notify the recipient of your gift and provide them with instructions to redeem it.

  • 500 characters remaining.

Frequently Asked Questions

With an eGift, you can instantly send a Great Course to a friend or loved one via email. It's simple:
1. Find the course you would like to eGift.
2. Under "Choose a Format", click on Video Download or Audio Download.
3. Click 'Send e-Gift'
4. Fill out the details on the next page. You will need to the email address of your friend or family member.
5. Proceed with the checkout process as usual.
Q: Why do I need to specify the email of the recipient?
A: We will send that person an email to notify them of your gift. If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: How will my friend or family member know they have a gift?
A: They will receive an email from The Great Courses notifying them of your eGift. The email will direct them to If they are already a customer, they will be able to add the gift to their My Digital Library and mobile apps. If they are not yet a customer, we will help them set up a new account so they can enjoy their course in their My Digital Library or via our free mobile apps.
Q: What if my friend or family member does not receive the email?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at ( or call 1-800-832-2412 for assistance.
Q: How will I know they have received my eGift?
A: When the recipient clicks on their email and redeems their eGift, you will automatically receive an email notification.
Q: What if I do not receive the notification that the eGift has been redeemed?
A: If the email notification is missing, first check your Spam folder. Depending on your email provider, it may have mistakenly been flagged as spam. If it is not found, please email customer service at ( or call customer service at 1-800-832-2412 for assistance.
Q: I don't want to send downloads. How do I gift DVDs or CDs?
A: eGifting only covers digital products. To purchase a DVD or CD version of a course and mail it to a friend, please call customer service at 1-800-832-2412 for assistance.
Q: Oops! The recipient already owns the course I gifted. What now?
A: Great minds think alike! We can exchange the eGifted course for another course of equal value. Please call customer service at 1-800-832-2412 for assistance.
Q: Can I update or change my email address?
A: Yes, you can. Go to My Account to change your email address.
Q: Can I select a date in the future to send my eGift?
A: Sorry, this feature is not available yet. We are working on adding it in the future.
Q: What if the email associated with eGift is not for my regular Great Course account?
A: Please please email customer service at ( or call our customer service team at 1-800-832-2412 for assistance. They have the ability to update the email address so you can put in your correct account.
Q: When purchasing a gift for someone, why do I have to create an account?
A: This is done for two reasons. One is so you can track the purchase of the order in your ‘order history’ section as well as being able to let our customer service team track your purchase and the person who received it if the need arises.
Q: Can I return or Exchange a gift after I purchase it?
A: Because the gift is sent immediately, it cannot be returned or exchanged by the person giving the gift. The recipient can exchange the gift for another course of equal or lesser value, or pay the difference on a more expensive item

Priority Code


Mathematics, Philosophy, and the "Real World"

Course No. 1440
Professor Judith V. Grabiner, Ph.D.
Pitzer College
Share This Course
4.9 out of 5
42 Reviews
100% of reviewers would recommend this series
Course No. 1440
Video Streaming Included Free

Course Overview

Mathematics has spread its influence far beyond the realm of numbers. The concepts and methods of mathematics are crucially important to all of culture and affect the way countless people in all spheres of life look at the world. Consider these cases:

  • When Leonardo da Vinci planned his mural The Last Supper in the 1490s, he employed geometric perspective to create a uniquely striking composition, centered on the head of Jesus.
  • When Thomas Jefferson sat down to write the Declaration of Independence in 1776, he composed it on the model of a geometric proof, which is what gives it much of its power as a defense of liberty.
  • When Albert Einstein developed his theory of general relativity in the early 20th century, he used non-Euclidean geometry to prove that the path of a ray of light, in the presence of a gravitational field, is not straight but curved.

Intriguing examples like these reflect the important dialogue between mathematics and philosophy that has flourished throughout history. Indeed, mathematics has consistently helped determine the course of Western philosophical thought. Views about human nature, religion, truth, space and time, and much more have been shaped and honed by the ideas and practices of this vital scientific field.

Award-winning Professor Judith V. Grabiner shows you how mathematics has shaped human thought in profound and exciting ways in Mathematics, Philosophy, and the "Real World," a 36-lecture series that explores mathematical concepts and practices that can be applied to a fascinating range of areas and experiences.

Believing that mathematics should be accessible to any intellectually aware individual, Professor Grabiner has designed a course that is lively and wide-ranging, with no prerequisites beyond high school math. For those with an interest in mathematics, this course is essential to understanding its invaluable impact on the history of philosophical ideas; for those with an interest in philosophy, Professor Grabiner's course reveals just how indebted the field is to the mathematical world.

Math Meets Philosophy

In a presentation that is clear, delightful, and filled with fascinating case histories, Professor Grabiner focuses on two areas of mathematics that are easily followed by the nonspecialist: probability and statistics, and geometry. These play a pivotal role in the lives of ordinary citizens today, when statistical information is everywhere, from medical data to opinion polls to newspaper graphs; and when the logical rules of a geometric proof are a good approach to making any important decision.

Mathematics, Philosophy, and the "Real World" introduces enough elementary probability and statistics so that you understand the subtleties of the all-important bell curve. Then you are immersed in key theorems of Euclid's Elements of Geometry, the 2,200-year-old work that set the standard for logical argument. Throughout the course, Professor Grabiner shows how these fundamental ideas have had an enormous impact in other fields. Notably, mathematics helped stimulate the development of Western philosophy and it has guided philosophical thought ever since, a role that you investigate through thinkers such as these:

  • Plato: Flourishing in the 4th century B.C.E., Plato was inspired by geometry to argue that reality resides in a perfect world of Forms accessible only to the intellect—just like the ideal circles, triangles, and other shapes that seem to exist only in the mind.
  • Descartes: Writing in the 17th century, René Descartes used geometric reasoning in a systematic search for all possible truths. In a famous exercise, he doubted everything until he arrived at an irrefutable fact: "I think, therefore I am."
  • Kant: A century after Descartes, Immanuel Kant argued that metaphysics was possible by showing its kinship with mathematics. The perfection of Euclidean geometry led him to take for granted that space has to be Euclidean.
  • Einstein: Working in the early 20th century with a concept of "straight lines" that was different from Euclid's, Albert Einstein showed that gravity is a geometric property of non-Euclidean space, which is an essential idea of his general theory of relativity.

Non-Euclidean Geometry Explained

The discovery of non-Euclidean geometry influenced fields beyond mathematics, laying the foundation for new scientific and philosophical theories and also inspiring works by artists such as the Cubists, the Surrealists, and their successors leading up to today.

Non-Euclidean geometry was a stunning intellectual breakthrough in the 19th century, and you study how three mathematicians, working independently, overthrew the belief that Euclid's geometry was the only possible consistent system for dealing with points, lines, surfaces, and solids. Einstein's theory of relativity was just one of the many ideas to draw on the non-Euclidean insight that parallel lines need not be the way Euclid imagined them.

Professor Grabiner prepares the ground for your exploration of non-Euclidean geometry by going carefully over several of Euclid's proofs so that you understand Euclid's theory of parallel lines at a fundamental level. You even venture into the visually rich world of art and architecture to see how Renaissance masters used Euclidean geometry to map three-dimensional space onto flat surfaces and to design buildings embodying geometrical balance and symmetry. The Euclidean picture of space became internalized to a remarkable extent during and after the Renaissance, with a far-reaching effect on the development of philosophy and science.

Change the Way You Think

Mathematics has not only changed the way specialists think about the world, it has given the rest of us an easily understandable set of concepts for analyzing and understanding our surroundings. Professor Grabiner provides a checklist of questions to ask about any statistical or probabilistic data that you may encounter. Her intriguing observations include the following:

  • Statistics: Biologist and author Stephen Jay Gould, who developed abdominal cancer, was told his disease had an eight-month median survival time after diagnosis. The diagnosis sounded hopeless, but his understanding of the characteristics of the median (as opposed to the mean or mode) gave him a strategy for survival.
  • Bad graphs: There are many ways to make a bad graph; some deliberately misleading, others merely badly conceived. Beware of a graph that starts at a number higher than zero, since comparisons between different data points on the graph will be exaggerated.
  • Polls: The Literary Digest poll before the 1936 U.S. presidential election was the largest ever conducted and predicted a landslide win for Alf Landon over Franklin Roosevelt. Yet the result was exactly the opposite due to an unrecognized systematic bias in the polling sample.
  • Probability: Intuition can lead one astray when one is judging probabilities. You investigate the case of an eyewitness to an accident who has done well on tests of identifying the type of vehicle involved. But a simple calculation shows that she is more likely wrong than not.

The Power of Mathematical Thinking

Mathematics, Philosophy, and the "Real World" focuses on mathematics and its influence on culture in the West. But for an alternative view, Professor Grabiner devotes a lecture to mathematics in classical China, where geometers discovered some of the same results as the ancient Greeks but with a very different approach. One major difference is that the Chinese didn't use indirect proof, a technique that proves a proposition true because the assumption that it is false leads to a contradiction.

In another lecture, Professor Grabiner gives time to the critics of mathematics—philosophers, scientists, poets, and writers who have argued against the misuse of mathematics. Charles Dickens speaks for many in his memorable novel Hard Times, which depicts the human misery brought by Victorian England's obsession with statistics and efficiency.

But even more memorable are the cases in which mathematics turns up where it is least expected. "We hold these truths to be self evident ..." So wrote Thomas Jefferson in the second sentence of the Declaration of Independence. He had originally started, "We hold these truths to be sacred and undeniable ... " The change to "self-evident" was probably made at the suggestion of Benjamin Franklin, a great scientist as well as a statesman, who saw the power of appealing to scientific thinking. A Euclidean proof begins with axioms (self-evident truths) and then moves through a series of logical steps to a conclusion.

With her consummate skill as a teacher, Professor Grabiner shows how Jefferson laid out America's case against Great Britain with all of the rigor he learned in Euclid's Elements, working up to a single, irrefutable conclusion: "That these United Colonies are, and of Right ought to be Free and Independent States."

There is arguably no greater demonstration of the power of mathematics to transform the real world—and it's just one of the fascinating insights you'll find in Mathematics, Philosophy, and the "Real World."

Hide Full Description
36 lectures
 |  30 minutes each
  • 1
    What's It All About?
    Professor Grabiner introduces you to the approach of the course, which deals not only with mathematical ideas but with their impact on the history of thought. This lecture previews the two areas of mathematics that are the focus of the course: probability and statistics, and geometry. x
  • 2
    You Bet Your Life—Statistics and Medicine
    At age 40, the noted biologist Stephen Jay Gould learned he had a type of cancer whose median survival time after diagnosis was eight months. Discover why his knowledge of statistics gave him reason for hope, which proved well founded when he lived another 20 years. x
  • 3
    You Bet Your Life—Cost-Benefit Analysis
    A mainstay of today's economics, cost-benefit analysis has its origins in an argument justifying belief in God, proposed by the 17th-century philosopher Blaise Pascal. Examine his reasoning and the modern application of cost-benefit analysis to a disastrous decision in the automotive industry. x
  • 4
    Popular Statistics—Averages and Base Rates
    In the first of three lectures on the popular use of statistics, investigate three ways of calculating averages: the mean, median, and mode. The preferred method depends on the nature of the data and the purpose of the analysis, which you test with examples. x
  • 5
    Popular Statistics—Graphs
    Learn how to separate good graphs from bad by examining cases of each and reviewing questions to ask of any graphically presented information. The best graphs promote fruitful thinking, while the worst represent poor statistical reasoning or even a deliberate attempt to deceive. x
  • 6
    Popular Statistics—Polling and Sampling
    Concluding your survey of popular statistics, you look at public opinion polling and the sampling process that makes it possible. Professor Grabiner uses a bowl of M&Ms as a realistic model of sampling, and she discusses important questions to ask about the results of any poll. x
  • 7
    The Birth of Social Statistics
    Geometry has been around for more than 2,000 years, but social statistics is a relatively new field, developed in part by Adolphe Quetelet in the 19th century. Investigate what inspired Quetelet to apply mathematics to the study of society and how the bell curve led him to the concept of the "average man." x
  • 8
    Probability, Multiplication, and Permutations
    Probing deeper into the origin of the bell curve, focus on the definition of probability, the multiplication principle, and the three basic laws of probability. Also study real-world examples, with an eye on the broader historical and philosophical implications. x
  • 9
    Combinations and Probability Graphs
    Adding the concept of combinations to the material from the previous lecture, Professor Grabiner shows why a bell curve results from coin flips, height measurements, and other random phenomena. Many situations are mathematically like flipping coins, which raises the question of whether randomness is a property of the real world. x
  • 10
    Probability, Determinism, and Free Will
    Explore two approaches to free will. Pierre-Simon Laplace believed that probabilistic reasoning only serves to mask ignorance of what, in principle, can be predicted with certainty. Influenced by the kinetic theory of gases, James Clerk Maxwell countered that nothing is absolutely determined and free will is possible. x
  • 11
    Probability Problems for Fun and Profit
    This lecture conducts you through a wide range of interesting problems in probability, including one that may save you from burglars. Conclude by examining the distribution of large numbers of samples and their relations to the bell curve and the concept of sampling error. x
  • 12
    Probability and Modern Science
    Turning to the sciences, Professor Grabiner shows how probability underlies Gregor Mendel's pioneering work in genetics. In the social sciences, she examines the debate over race and IQ scores, emphasizing that the individual, not the averages, is what's real. x
  • 13
    From Probability to Certainty
    This lecture introduces the second part of the course, which examines geometry and its interactions with philosophy. Begin by comparing probabilistic and statistical reasoning on the one hand, with exact and logical reasoning on the other. What sorts of questions are suited to each? x
  • 14
    Appearance and Reality—Plato's Divided Line
    Plato's philosophy is deeply grounded in mathematical ideas, especially those from ancient Greek geometry. In this lecture and the next, you focus on Plato's Republic. Its central image of the Divided Line is a geometric metaphor about the nature of reality, being, and knowledge. x
  • 15
    Plato's Cave—The Nature of Learning
    In his famous Myth of the Cave, Plato depicts a search for truth that extends beyond everyday appearances. Professor Grabiner shows how Plato was inspired by mathematics, which he saw as the paradigm for order in the universe—a view that had immense impact on later scientists such as Kepler and Newton. x
  • 16
    Euclid's Elements—Background and Structure
    Written around 300 B.C.E., Euclid's Elements of Geometry is the most successful textbook in history. Sample its riches by studying the underpinnings of Euclid's approach and looking closely at his proof that an equilateral triangle can be constructed with a given line as its side. x
  • 17
    Euclid's Elements—A Model of Reasoning
    This lecture focuses on the logical structure of Euclid's Elements as a model for scientific reasoning. You also examine what Aristotle said about the nature of definitions, axioms, and postulates and the circumstances under which logic can reveal truth. x
  • 18
    Logic and Logical Fallacies—Why They Matter
    Addressing the nature of logical reasoning, this lecture examines the forms of argument used by Euclid, including modus ponens, modus tollens, and proof by contradiction, as well as such logical fallacies as affirming the consequent and denying the antecedent. x
  • 19
    Plato's Meno—How Learning Is Possible
    The first of two lectures on Plato's Meno shows his surprising use of geometry to discover whether learning is possible and whether virtue can be taught. Professor Grabiner poses the question: Is Plato's account of how learning takes place philosophically or psychologically plausible? x
  • 20
    Plato's Meno—Reasoning and Knowledge
    Continuing your investigation of Meno, look at Plato's use of hypothetical reasoning and geometry to discover the nature of virtue. Conclude by going beyond Plato to consider the implications of his ideas for the teaching of mathematics today. x
  • 21
    More Euclidean Proofs, Direct and Indirect
    This lecture returns to Euclid's geometry, with the eventual goal of showing the key theorems he needs to establish his logically elegant and philosophically important theory of parallels. Working your way through a series of proofs, learn how Euclid employs his basic assumptions, or postulates. x
  • 22
    Descartes—Method and Mathematics
    Widely considered the founder of modern philosophy, René Descartes followed a Euclidean model in developing his revolutionary ideas. Probe his famous "I think, therefore I am" argument along with some of his theological and scientific views, focusing on what his method owes to mathematics. x
  • 23
    Spinoza and Jefferson
    This lecture profiles two heirs of the methods of demonstrative science as described by Aristotle, exemplified by Euclid, and reaffirmed by Descartes. Spinoza used geometric rigor to construct his philosophical system, while Jefferson gave the Declaration of Independence the form of a Euclidean proof. x
  • 24
    Consensus and Optimism in the 18th Century
    Mathematics, says Professor Grabiner, underlies much of 18th-century Western thought. See how Voltaire, Adam Smith, and others applied the power of mathematical precision to philosophy, a trend that helped shape the Enlightenment idea of progress. x
  • 25
    Euclid—Parallels, Without Postulate 5
    Having covered the triumphal march of Euclidean geometry into the Age of Enlightenment, you begin the third part of the course, which charts the stunning reversal of the semireligious worship of Euclid. This lecture lays the groundwork by focusing on Euclid's theory of parallel lines. x
  • 26
    Euclid—Parallels, Needing Postulate 5
    Euclid's fifth postulate, on which three of his propositions of parallels hinge, seems far from self-evident, unlike its modern restatement used in geometry textbooks. Work through several proofs that rely on Postulate Five, examining why it is necessary to Euclid's system and why it was so controversial. x
  • 27
    Kant, Causality, and Metaphysics
    The first of two lectures on Immanuel Kant examines Kant's question of whether metaphysics is possible. Study Kant's classification scheme, which confines metaphysical statements such as "every effect has a cause" to a category called the synthetic a priori. x
  • 28
    Kant's Theory of Space and Time
    Learn how geometry provides paradigmatic examples of synthetic a priori judgments, required by Kant's view of metaphysics. Kant's picture of the universe takes for granted that space is Euclidean, an idea that went unquestioned by the greatest thinkers of the 18th century. x
  • 29
    Euclidean Space, Perspective, and Art
    Art and Euclid have gone hand in hand since the Renaissance. Investigate how painters and architects, including Piero della Francesca, Leonardo da Vinci, Albrecht Dürer, Michelangelo, and Raphael, used Euclidean geometry to map three-dimensional space onto flat surfaces and to design buildings embodying geometric balance. x
  • 30
    Non-Euclidean Geometry—History and Examples
    This lecture introduces one of the most important discoveries in modern mathematics: non-Euclidean geometry, a new domain that developed by assuming Euclid's fifth postulate is false. Three 19th-century mathematicians—Gauss, Lobachevsky, and Bolyai—independently discovered the self-consistent geometry that emerges from this daring assumption. x
  • 31
    Non-Euclidean Geometries and Relativity
    Delve deeper into non-Euclidean geometry, distinguishing between three types of surfaces: Euclidean and flat, Lobachevskian and negatively curved, and Riemannian and positively curved. Einstein discovered that a non-Euclidean geometry of the Riemannian type had the properties he needed for his general theory of relativity. x
  • 32
    Non-Euclidean Geometry and Philosophy
    Philosophers had long valued Euclidean geometry for giving a self-evidently true account of the world. But how did they react to the possibility that we live in a non-Euclidean space? Explore the quest to understand the geometric nature of reality. x
  • 33
    Art, Philosophy, and Non-Euclidean Geometry
    This lecture charts the creative responses to non-Euclidean geometry and to Einstein's theory of relativity. Examine works by artists such as Picasso, Georges Braque, Marcel Duchamp, René Magritte, Salvador Dal', Max Ernst, and architects such as Frank Gehry. x
  • 34
    Culture and Mathematics in Classical China
    Other cultures developed complex mathematics independently of the West. Investigate China as a fascinating example, where geometry long flourished at a sophisticated level, employing methods very different from those in Europe and in a context much less influenced by philosophy. x
  • 35
    The Voice of the Critics
    Survey some of the thinkers who have criticized the influence of mathematics on culture throughout history, ranging from Pascal and Malthus to Dickens and Wordsworth. A sample of their objections: Mathematical reasoning gives a false sense of precision, and mathematical thinking breeds inhumanity. x
  • 36
    Mathematics and the Modern World
    After reviewing the major conclusions of the course, Professor Grabiner ends with four modern interactions between mathematics and philosophy: entropy and why time doesn't run backward; chaos theory; Kurt Gödel's demonstration that the consistency of mathematics can't be proven; and the questions raised by the computer revolution. x

Lecture Titles

Clone Content from Your Professor tab

What's Included

What Does Each Format Include?

Video DVD
Video Download Includes:
  • Ability to download 36 video lectures from your digital library
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps
Video DVD
DVD Includes:
  • 36 lectures on 6 DVDs
  • 184-page printed course guidebook
  • Downloadable PDF of the course guidebook
  • FREE video streaming of the course from our website and mobile apps

What Does The Course Guidebook Include?

Video DVD
Course Guidebook Details:
  • 184-page printed course guidebook
  • Charts & diagrams
  • Suggested readings
  • Questions to consider

Enjoy This Course On-the-Go with Our Mobile Apps!*

  • App store App store iPhone + iPad
  • Google Play Google Play Android Devices
  • Kindle Fire Kindle Fire Kindle Fire Tablet + Firephone
*Courses can be streamed from anywhere you have an internet connection. Standard carrier data rates may apply in areas that do not have wifi connections pursuant to your carrier contract.

Your professor

Judith V. Grabiner

About Your Professor

Judith V. Grabiner, Ph.D.
Pitzer College
Dr. Judith V. Grabiner is the Flora Sanborn Pitzer Professor of Mathematics at Pitzer College, one of the Claremont Colleges in California, where she has taught since 1985. She earned her B.S. in Mathematics, with General Honors, from the University of Chicago. She went on to earn her Ph.D. in the History of Science from Harvard University. Professor Grabiner has numerous achievements and honors in her field. In 2012 she...
Learn More About This Professor
Also By This Professor


Mathematics, Philosophy, and the "Real World" is rated 4.8 out of 5 by 42.
Rated 5 out of 5 by from Great course I listened to one of the last lectures by Professor Grabiner on non-Euclidean Geometry. I have found most of the Great Courses extremely interesting, mostly in areas in which I had very little previous knowledge, and have been amazed at the extensive knowledge of the several lecturers. I enjoyed Professor Grabiner’s from the beginning, partly because they discussed mathematics and physical sciences, which were close to the disciplines that I had studied and with which I had some previous understanding, I thought. I further appreciated them because Professor Grabiner tied those disciplines in with “philosophies” with which I had only, through the Great Courses lectures, a beginner’s rudimentary knowledge. Now, near the end of the series she had discussed in several lectures, the non-Euclidean space theories, and more then theories, those which appear to be fact as our human reach of observation extends farther. I cannot imagine a human mind so small as to not find her lectures fascinating, nor one so great as to find them trivial. They make me recognize even more the profound meaning of Jesus’ answer to Pilot’s question, “What is truth?”
Date published: 2017-03-20
Rated 5 out of 5 by from This course has helped with critical thinking in day to day life.
Date published: 2017-03-03
Rated 5 out of 5 by from Geometry And Statistics Made Sense For A Change Professor Grabiner combines Probability & Statistics, Euclidian & Non-Euclidian Geometry with Philosophy and real-world applications to give us 36 fascinating lectures. For the first time I began to appreciate the concepts of Geometry and gain an understanding of how probability and statistics can give us a view of truth or be presented in ways to manipulate us. I also enjoy sketching and now I realize how profoundly the use of Geometry allowed painters to provide depth to their works.
Date published: 2017-01-31
Rated 5 out of 5 by from Fascinating and thoroughly enjoyable My husband is a college math professor and I teach English, so this course was a gift for him but we ended up watching it together and we both loved every moment. Professor Grabiner's presentation is focused and highly informative, yet also completely engaging and lively; her enthusiasm for the subject is infectious. She manages to synthesize advanced mathematical ideas with the study of philosophy, art, literature, and culture. The material was sophisticated enough for my mathematician husband but accessible enough for someone like me (I've never taken calculus) to understand. We're already looking forward to watching the series again! Thank you for this excellent course. We would love to see additional offerings from Professor Judith Grabiner.
Date published: 2016-11-30
Rated 5 out of 5 by from Just go for it ! I must admit that I cannot classify this course under a single heading, because it has so many different kinds of lectures with different topics and perspectives in it. I might say that it is two or three courses crammed together. In general, it explores mathematical concepts and their application to real world and philosophy, especially ancient philosophy. Also it includes some basic math practices. So, who should buy this course ? I think everyone who has the slightest interest to any word cited in the title must give it a try. You will understand why after meeting with Professor Judith V. Grabiner.
Date published: 2016-09-21
Rated 5 out of 5 by from I liked the influence of Math on modern arts It is amazing how Professor Judith Grabiner shows the great impact of two topics of mathematics: Probability-Statistics and Geometry (Euclidean and Non-Euclidean) on the way we try to understand reality. I liked very much the lectures on non-Euclidean geometry whit its conceptions of new spaces and its influence on architecture and modern art. This course is very original and useful for expanding my perspectives to look at the world.
Date published: 2016-05-21
Rated 5 out of 5 by from Impossible to exaggerate how good this course is I just finished this course a few days ago, and I'm still excited and amazed by all that I've learned. When I bought this course, I thought (from the title and from other reviews) that I would be learning about the connection between math, philosophy, and their connection to the real world. Well, I got that, of course, but I got so, so much more! Indeed, what I got was a tour de force that examined the profound implications that two broad mathematics ways of thinking--the "probabilistic" and the "geometric"--have had (and continue to have) on philosophers, mathematicians, scientists, artists, corporations, policy makers, etc. I read a lot of philosophy, and have often read about how Euclid's geometry influenced certain thinkers, but never before was the extent of that influence so clearly (and powerfully) laid out than by Professor Grabiner in this course. In the first part of the course, Professor Grabiner provides the viewer with the basic foundations of statistics and probability, discussing such things as the (somewhat surprising, for me, anyway) philosophical and religious roots of cost-benefit analysis and expected value (lecture 3), standard deviation (lecture 4), the history of the graph (lecture 5), and polling and sampling techniques (lecture 7). A lot of this information provided a nice review of my college probability and statistics classes, but was not too earth shattering ... until lecture 10. Here, Professor Grabiner connected the knowledge provided in the previous lectures to a discussion of determinism v. free will, effortlessly discussing the effect that probability theory had on leading mathematicians, scientists, and philosophers, and the effect that figures in each field had on each other. For instance, did you know that Bohr's theory of the atom was influenced by Kierkegaard's leap of faith? Or that Maxwell was influenced by Lucretius' "swerve"? Or even that the debates that were played out among religious figures centuries ago is now being mirrored, in a very specific way, in the debates between the two competing theories of the universe, quantum mechanics and relativity? It is here, in drawing connections between different fields of knowledge, where the course paid major dividends, and where Professor Grabiner is at her best. Similarly, in the second part of the course, where Euclidean thinking is emphasized and explained, Professor Grabiner links up the philosophical story of Plato's cave to Kepler's laws of planetary motion and Newton's law of universal gravitation (lecture 15). What?!! I had no idea there was a connection here, yet now, I am convinced. I also became aware of the enormous debt to Euclid that was owed by such monumental thinkers as Descartes (lecture 22), Spinoza and Jefferson (lecture 23), and Kant (lecture 27). Simply put, without Euclidean geometry, what these thinkers said and wrote would not have been possible. But, even more than this, I now feel that, by understanding the geometric way of thinking that underlay the philosophy of these great thinkers, I now understand what they were trying to do, and the strengths and weaknesses of their approaches, in a way that I never have before. In fact, more than this, I am now convinced that I really never understood these thinkers before, and Professor Grabiner's course made me skeptical that anyone else really can either without understanding the extent to which, and in what way, these minds were directly influenced by Euclid. I now realize that I should have taken the sign that once hung above Plato's academy, which read "Let no one ignorant of geometry enter", much more seriously than I have in the past, and that it might profitably be attached as a warning label to those who would read the thinkers just mentioned. But the reverse is probably also true. We might have a sign attached above the great physics labs across the world saying something like "Let no one ignorant of philosophy enter," for, at the most fundamental level, the debate between modern physicists over their particular world views are, at their core, philosophical. "And", to quote Vonnegut, "so it goes". Other aspects of this course that I really enjoyed learning about was geometry's impact on art (lecture 29 and 33), the tremendous philosophical, mathematical, and scientific impact of non-Euclidean forms of thinking (lectures 30-32), and the importance of Euclidean and non-Euclidean ways of thinking in the modern world (lectures 34-36). This course was a real eye-opener for me, and I can honestly say that I will not look at the world the same way again. Grade: A+
Date published: 2016-02-14
Rated 5 out of 5 by from A Tour de Force This is a spectacular presentation of mathematics for those with a background in liberal arts. Dr. Grabiner is so plain spoken and straightforward that it takes a bit to realize what a deep understanding of classical philosophy and intellectual history she has. It is simply wonderful.
Date published: 2016-01-20
  • y_2017, m_9, d_25, h_22
  • bvseo_bulk, prod_bvrr, vn_bulk_2.0.3
  • cp_1, bvpage1
  • co_hasreviews, tv_6, tr_36
  • loc_en_US, sid_1440, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.0
  • CLOUD, getContent, 9.29ms

Questions & Answers


1-10 of 11 Questions
1-10 of Questions

Customers Who Bought This Course Also Bought

Video title